Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод барьерных функций





В отличие от метода штрафных функций, данный метод применим к задачам с ограничениями только в виде неравенств.

 
Суть метода заключается в том, что поиск начинается обязательно из внутренней точки и последующие точки не должны выходить из допустимой области. С этой целью задача модифицируется так, что при приближении к границе допустимой области растет барьер, препятствующий выходу на границу. Исходная задача на условный экстремум задается в виде f (x) à min; ji (x) £ 0, .

Она преобразуется в задачу безусловной минимизации вспомогательной функции

Q (x) = f (x) + mB (x), где B (x) – барьерная функция, m - параметр барьера. Обязательное условие: внутренность области не должна быть пустой (имеются точки, в которых " ji (x) < 0). Барьерная функция строится так, чтобы она была неотрицательной и непрерывной на допустимом множестве и стремилась к бесконечности при приближении изнутри к границе: Как и в случае штрафной функции, существует несколько конструкций B (x), удовлетворяющих этим условиям. Но в основном используется барьерная функция в виде Решение вспомогательной задачи зависит от значения параметра барьера.

Алгоритм.

1. Выбрать начальную точку x 0 так, чтобы " ji (x 0)<0; задать точность e, начальное значение m 0 и число b Î (0, 1).

2. Минимизировать Q (x) одним из методов безусловной оптимизации, в результате чего определяется .

3. Проверить: если , то остановиться, приняв за оптимальное решение задачи.

5. Положить , за начальную точку принять и вернуться на 2.

Значение m 0 можно брать из интервала [2, 10]. Важное замечание касается п.2 алгоритма: в процессе поиска минимума вблизи границы из-за дискретности шагов возможен выход за допустимую область, где барьерная функция становится отрицательной, что повлечет расхождение поиска. Поэтому необходима явная проверка на допустимость точек на каждом шаге при минимизации Q.


47. Динамическое программирование (ДП): принцип оптимальности, функциональное уравнение, процедура ДП.

Концепция метода проистекает из следующего свойства оптимального решения. Пусть оптимальный путь из точки A в точку E проходит через точки B, С и D. Тогда любая часть этого пути является оптимальным путем. Принцип оптимальности - оптимальное управление определяется конечной целью управления и состоянием системы в рассматриваемый момент, независимо от того, каким образом она пришла в это состояние; при фиксированном состоянии системы последующее оптимальное решение не зависит от ее предыстории. Он позволяет разложить задачу на ряд задач значительно меньшей размерности. Имеются в виду задачи, которые могут быть представлены как многошаговые. Такие задачи описываются математической моделью, в которой и критерий, и ограничения являются составными. Под составной понимается функция f, образованная частными функциями (подфункциями) fi, к которым применен один и тот же оператор вхождения (например, оператор сложения), т.е. f =(<оператор> < f 1, f 2,..., fm >).

Количество шагов в задаче определяется числом подфункций критерия. При разбиении задачи на шаги состояние (параметр состояния) служит связующим звеном между смежными шагами. Состояние описывается теми переменными системы, которые зависят от решения на предшествующем шаге и знание которых достаточно для принятия решения на очередном шаге.







Дата добавления: 2015-04-19; просмотров: 1798. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия