Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача о кратчайшем пути





Дан сетевой график, в котором каждой дуге поставлена в соответствие ее длина Lij. Порядок нумерации вершин не имеет значения, но в приведенной нумерации задача состоит в определении кратчайшего пути из вершины 1 в вершину 7. Модель задачи включает критерий - длину искомого пути

, где - путь от вершины 1 к вершине 7, и граф сети (или описывающую его матрицу). Применение метода ДП правомерно, так как задача представима как многошаговая: искомый путь есть допустимая графом последовательность дуг, а выбор дуги рассматриваем как один шаг задачи. Состояние полностью определяется номером вершины, а число шагов от конкретной вершины до 7-й неоднозначно. Учитывая эти особенности, вводим последовательность функций { fi }, i =1,7 так, что каждая функция есть минимальная длина пути от i -й вершины в 7-ю: , где - мн-во всех допустимых путей из i -й вершины в 7-ю.

Для составления функционального уравнения возьмем произвольную вершину i (i №7) и будем определять путь из нее в вершину 7. Из этого пути выделим один шаг - выбор вершины, следующей за i -й. Множество дуг, выходящих из вершины i, обозначим . Взяв произвольную дугу из множества ,окажемся в смежной вершине j, длина пути до которой равна Lij. Длина пути от i -й вершины до 7-й будет равна Lij + fj. Так как она зависит только от j, то выбором j можно ее минимизировать. Рекуррентное соотношение: . Начинать условную оптимизацию следует с определения f 7. Так как f 7 - минимальная длина пути из вершины 7 в саму себя, то f 7=0. Вычислять можно те функции fi, для которых уже известны все fj, ij О . Поэтому следующей можно находить только функцию f 6: f 6 = min (L 67 + f 7)=1+0=1.

В приведенных формулах подчеркнуты индексы, на которых достигается минимум. Из расчета видно, что длина кратчайшего пути из вершины 1 в вершину 7 равна 11. Найдем оптимальный путь: из f 1: первая часть пути лежит на дуге 1-2, значит, новое состояние - это вершина 2; из f 2 находим следующую часть пути - дугу 2-5 и очередное состояние - вершину 5; поэтому далее обращаемся к f 5 и достраиваем оптимальный путь дугой 5-6 и, наконец, заканчиваем дугой 6-7. Весь путь: 1®2®5®6®7. На этапе безусловной оптимизации просматривались не все функции fi, что отличает данную задачу. Имея результаты условной оптимизации, можно легко найти кратчайшие пути из любой вершины сети в вершину 7.







Дата добавления: 2015-04-19; просмотров: 490. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия