Функция полезности
Применительно к многокритериальной задаче в качестве товаров и услуг выступают критерии, а в качестве потребителя – ЛПР. При этом предполагается существование на множестве значений критериев y 1 ,y 2 ,….,ym скалярной оценки предпочтений ЛПР - полезность. Функция U, которая каждой точке Y критериального пространства ставит в соответствие действительное число U (Y), называется функцией полезности (ценности) ЛПР, если Y¢ ~ Y"Û U (Y')= U (Y"), Y'ýY"Û U (Y')> U (Y"). Если функция полезности известна, то многокритериальная задача сводится к стандартной задаче оптимизации: найти вектор X ÎD, максимизирующий U [Y(X)]. Множество точек критериального пространства, одинаковых по предпочтительности (для которых U (Y )= Const), образует гиперповерхность равного уровня функции полезности. Наибольшие затруднения при практическом применении рассматриваемого подхода вызывает построение функции полезности, адекватно отражающей предпочтения ЛПР. Для построения функции полезности предварительно устанавливаем область возможных значений критериев: . Полагая, что структура предпочтений ЛПР аддитивна (на основе соответствующих предварительных исследований), функцию полезности представим в виде U(y 1 ,y 2 )= 1 U 1 (y 1 )+ 2 U 2 (y 2 ), (1) где Ui()=0, Ui()= 1, >0, 2 >0 и 1 + 2 = 1. В процедуре отыскания U в виде (1), приводимой ниже, одинаковость пар и значения средних точек определяет ЛПР в диалоге с аналитиком. I.Строим U 1 в следующей последовательности: -находим среднюю по полезности точку у интервала [ ] и полагаем U 1 (y )=0,5; -находим среднюю по полезности точку у интервала [у , ] и полагаем U 1 (y )=0.75; -находим среднюю по полезности точку у интервала [ ] и принимаем U 1 (y )=0,25; -проверяем согласованность результатов: является ли у средней по полезности точкой интервала [ у , у ]? Если нет, то н корректировать эти точки до достижения согласованности. -по пяти определенным точкам (или большему числу, если продолжить дробление интервалов) строится график функции U 1 (y 1 ). 2. Таким же образом находим U 2 (у 2 ). 3. Определяем коэффициенты шкалирования и 2. Для этого выбираем любые две одинаковые по предпочтительности пары (y 1 ,y 2). Пусть, например, это пары () и (). Тогда U ()= U () или . Значения U 1 и U 2 в точках и определяются по построенным графикам. Находим значения и . Минусы: необходимость длительной и напряженной работы с ЛПР. Плюсы: функция полезности наиболее полно и адекватно отражает систему ценностей ЛПР и позволяет относительно просто находить решение, наиболее предпочтительное (и в этом смысле оптимальное) для ЛПР с помощью одной стандартной задачи оптимизации.
|