Идеальной или точкой абсолютного максимума называют точку в критериальном пространстве, в которой все критерии достигают своих максимальных значений: .
Если эта точка принадлежит достижимому множеству G, то все эффективное (паретовское) множество состоит из этой единственной точки и проблемы как таковой в этом случае нет. Однако идеальная точка обычно лежит вне множества G и поэтому нереализуема. Идея метода состоит в том, чтобы на множестве G найти точку, наиболее близкую к идеальной. Мерой близости выступает некоторая функция расстояния , в качестве которой используют в общем случае взвешенные Lp -метрики , где р может быть любым целым положительным числом и . Так как возведение в степень является монотонным преобразованием, то на положение экстремума оно не влияет. Таким образом, многокритериальная задача сводится к минимизации функции где - веса отклонений, задаваемые ЛПР ( =1, >0). На практике чаще используют значение р =2. Минимизация такой функции приводит к эффективному решению. Целесообразно использовать отклонения в относительных единицах, для чего выражение в квадратных скобках можно разделить на .