Создание вращающегося магнитного поля. Эллиптические, круговые и пульсирующие м. поля. Деформация и реверсирование вращающихся полей
Изобразим два упрощенных поперечных разреза двухполюсного асинхронного двигателя в виде трех концентрических окружностей. Наружная окружность - наружная поверхность сердечника статора, средняя окружность - внутренняя поверхность сердечника статора, внутренняя окружность - наружная поверхность ротора. В пазах сердечника статора расположена трехфазная простейшая (сосредоточенная) обмотка. Каждая фаза состоит из одного витка (двух проводников на поперечном разрезе). При включении трехфазной обмотки статора в сеть трехфазного тока в обмот ках фаз появятся токи, сдвинутые по фазе (во времени) относительно друг друга на 120 эл.град. Ток каждой обмотки создает пульсирующее МДС, а совокупное действие этих МДС создает результирующую МДС, вектор которой, принимая различное направление в разные моменты времени, вращается относительно статора. Если частота тока в обмотке статора f1 = 50 Гц, то вектор МДС вращается с частотой 50 об/с. Вращающаяся МДС создает в расточке статора вращающееся магнитное поле. Вращающееся магнитное поле статора может быть круговым и эллиптическим. Круговое поле характеризуется тем, что пространственный вектор магнитной индукции этого поля вращается равномерно и своим концом описывает окружность, т.е. значение вектора индукции в любом его пространственном положении остается неизменным. Если для двухфазной обмотки статора векторы магнитной индукции обмоток фаз не образуют симметричной системы, то вращающееся поле статора становится эллиптическим: пространственный вектор магнитной индукции В этого поля в разные моменты времени не остается постоянным и, вращаясь неравномерно, своим концом описывает эллипс. Представив вектор магнитной индукции эллиптического поля в виде суммы векторов прямого и обратного магнитных полей, с учетом их равенства получим в результате пульсирующее магнитное поле. Вектор индукции этого поля неподвижен в пространстве и лишь изменяется во времени от +Вмах до –Вмах, проходя через нулевое значение. Деформация и реверсирование вращающихся полей??????
44.Рабочие характеристики асинхронного двигателя. Рабочие характеристики асинхронного двигателя представляют собой графически выраженные зависимости частоты вращения n2, КПД η, полезного момента (момента на валу) М2, коэффициента мощности cosφ1 и тока статора I1 от полезной мощности Р2 при U1=const и f1=const.
При увеличение нагрузки на валу, скольжение возрастает а частота вращения ротора падает. Т.к. скольжение определяется отношением электрических потерь в роторе к электромагнитной мощности. s=Рэ2/Рэм. При Р2=0 cosφ1≠0, т.к. из сети поступает с реактивной так же и активная мощность в режиме хх. При увеличении нагрузки на валу потребляемая из сети активная мощность быстро растет, при этом реактивная часть практически не изменяется, т.к. не изменяется наводимый в магнитопроводе статора магнитный поток. При увеличении полезной мощности на валу Р2=0 КПД также увеличивается от нуля до максимального значения, которое он принимает при равенстве постоянных (магнитные и механические) потерь и переменных (электрические потери в обмотках). При дальнейшем росте нагрузки КПД начинает убывать. При Р2=0 в обмотке статора течет ток холостого хода I0, имеющий в основном реактивную составляющую. При увеличении полезной мощности на валу растет потребляемая из сети активная мощность, а, следовательно, и ток I1. Зависимость полезного момента на валу двигателя от полезной мощности Р2 определяется выражением: М2 = Р2/w2, где Р2 – полезная мощность, w2 – угловая частота вращения. Откуда следует, что если n2 = const, то график М2 = f(P2) представляет собой прямую линию.
|