Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Формы записи линеаризованных уравнений звеньев. Передаточные функции





 

В ТАУ приняты следующие формы записи линеаризованных дифференциальных уравнений звеньев.

1. Операторный (символический) способ записи.

- Операцию дифференцирования по времени обозначают .

- Выходную величину и ее производные оставляют слева.

- Коэффициент при приращении выходной величины делают равным единице (делением всех членов уравнения на ).

- Вводят постоянные времени , .

- Вводят коэффициенты передачи , .

- Опускают в уравнении символ .

 

Уравнение (3.7) в этом случае будет иметь вид

(3.8)

В установившемся состоянии, когда и из уравнения (3.8) получаем уравнение статики данного звена

и соответствующую линейную статическую характеристику звена.

Коэффициент показывает отношение выходной величины к входной в установившемся режиме, его размерность определяется отношением размерности к размерности .

2. Форма записи с помощью передаточной функции.

Введем обозначения:

,

.

Многочлен называют собственным оператором звена, многочлен - входным оператором.

Название “собственный оператор” обусловлено тем, что многочлен характеризует собственное движение звена, т.е. его движение при отсутствии внешних возмущающих и управляющих воздействий.

Уравнение звена теперь можно представить в форме

, . (3.9)

Вводится формальное определение передаточной функции звена, описываемого линейным дифференциальным уравнением с постоянными коэффициентами:

. (3.10)

Символическая запись уравнения (3.8) будет иметь вид:

, здесь .

Не следует путать символ дифференцирования с комплексной переменной (или ), имеющей место в преобразовании Лапласа ().

В отличие от преобразования Лапласа, операторный способ, сокращая запись дифференциальных уравнений, не дает способа для их решения.

Более строго определение передаточной функции вводится на базе преобразования Лапласа:

, .

Пусть даны начальные условия

, , .

Тогда

, ,

.

Применив это преобразование к дифференциальному уравнению звена (3.8), получим

.

Из этого алгебраического выражения найдем изображение выходной величины

,

где через обозначен многочлен, включающий в себя все члены с величинами начальных условий.

Передаточной функцией звена называется отношение изображений Лапласа выходной и входной величин при нулевых начальных условиях и равных нулю остальных воздействий на звено, т.е.

, (3.11)

Сравнивая полученное выражение (3.11) с дифференциальным уравнением звена (3.8), видим, что формально передаточную функцию звена можно составлять как отношение операторных многочленов правой и левой частей уравнения звена, сделав замену оператора на оператор .

Это следует из того, что дифференцированию оригинала – символическому умножению оригинала на , при нулевых начальных условиях соответствует умножение изображения переменной на комплексное число .

Сходство между передаточными функциями в операторной форме и в форме изображения Лапласа чисто внешнее, и оно имеет место только в случае стационарных звеньев (и систем).

В общем случае, степень многочлена , как правило, ниже степени многочлена . Характеристическое уравнение звена имеет вид , так что корни характеристического уравнения звена являются полюсами его передаточной функции.

Понятием передаточной функции удобно пользоваться при анализе структурных схем САУ.

 

№12

 

 







Дата добавления: 2015-04-19; просмотров: 558. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия