Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Формы записи линеаризованных уравнений звеньев. Передаточные функции





 

В ТАУ приняты следующие формы записи линеаризованных дифференциальных уравнений звеньев.

1. Операторный (символический) способ записи.

- Операцию дифференцирования по времени обозначают .

- Выходную величину и ее производные оставляют слева.

- Коэффициент при приращении выходной величины делают равным единице (делением всех членов уравнения на ).

- Вводят постоянные времени , .

- Вводят коэффициенты передачи , .

- Опускают в уравнении символ .

 

Уравнение (3.7) в этом случае будет иметь вид

(3.8)

В установившемся состоянии, когда и из уравнения (3.8) получаем уравнение статики данного звена

и соответствующую линейную статическую характеристику звена.

Коэффициент показывает отношение выходной величины к входной в установившемся режиме, его размерность определяется отношением размерности к размерности .

2. Форма записи с помощью передаточной функции.

Введем обозначения:

,

.

Многочлен называют собственным оператором звена, многочлен - входным оператором.

Название “собственный оператор” обусловлено тем, что многочлен характеризует собственное движение звена, т.е. его движение при отсутствии внешних возмущающих и управляющих воздействий.

Уравнение звена теперь можно представить в форме

, . (3.9)

Вводится формальное определение передаточной функции звена, описываемого линейным дифференциальным уравнением с постоянными коэффициентами:

. (3.10)

Символическая запись уравнения (3.8) будет иметь вид:

, здесь .

Не следует путать символ дифференцирования с комплексной переменной (или ), имеющей место в преобразовании Лапласа ().

В отличие от преобразования Лапласа, операторный способ, сокращая запись дифференциальных уравнений, не дает способа для их решения.

Более строго определение передаточной функции вводится на базе преобразования Лапласа:

, .

Пусть даны начальные условия

, , .

Тогда

, ,

.

Применив это преобразование к дифференциальному уравнению звена (3.8), получим

.

Из этого алгебраического выражения найдем изображение выходной величины

,

где через обозначен многочлен, включающий в себя все члены с величинами начальных условий.

Передаточной функцией звена называется отношение изображений Лапласа выходной и входной величин при нулевых начальных условиях и равных нулю остальных воздействий на звено, т.е.

, (3.11)

Сравнивая полученное выражение (3.11) с дифференциальным уравнением звена (3.8), видим, что формально передаточную функцию звена можно составлять как отношение операторных многочленов правой и левой частей уравнения звена, сделав замену оператора на оператор .

Это следует из того, что дифференцированию оригинала – символическому умножению оригинала на , при нулевых начальных условиях соответствует умножение изображения переменной на комплексное число .

Сходство между передаточными функциями в операторной форме и в форме изображения Лапласа чисто внешнее, и оно имеет место только в случае стационарных звеньев (и систем).

В общем случае, степень многочлена , как правило, ниже степени многочлена . Характеристическое уравнение звена имеет вид , так что корни характеристического уравнения звена являются полюсами его передаточной функции.

Понятием передаточной функции удобно пользоваться при анализе структурных схем САУ.

 

№12

 

 







Дата добавления: 2015-04-19; просмотров: 558. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия