Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Динамические звенья и их характеристики





Для расчета различных систем автоматического управления они обычно разбиваются на динамические звенья.

Под динамическим звеном понимают устройство любого физического вида и конструкции, но описываемое определенным дифференциальным уравнением.

(Другое определение: Динамическое звено – это часть САУ, соответствующая какому-либо элементарному алгоритму).

В соответствии с этим определением классификация звеньев производится по виду дифференциального уравнения (или передаточной функции).

У каждого динамического звена может быть лишь одна входная и выходная величина. Выходная величина всякого динамического звена не оказывает на него какого-либо влияния, т.е. динамические звенья имеют свойство однонаправленности.

Статическая характеристика любого линеаризованного звена может быть изображена прямой линией.

В соответствии со статической характеристикой различают типы динамических звеньев.

В звеньях позиционного, или статического, типа линейной зависимостью связаны выходная и входная величины в установившемся режиме. Коэффициент называют коэффициентом передачи звена.

В звеньях интегрирующего типа линейной зависимостью связаны производная выходной величины и входная величина в установившемся режиме. В этом случае для установившегося режима будет справедливо равенство , откуда и произошло название этого типа звеньев.

При одинаковой размерности входной и выходной величин коэффициент передачи будет иметь размерность [сек -1].

В звеньях дифференцирующего типа линейной зависимостью связаны выходная величина и производная входной величины в установившемся режиме, откуда и произошло название этого типа звеньев. При одинаковой размерности входной и выходной величин коэффициент передачи будет иметь размерность [сек].

В дальнейшем изложении для характеристики звеньев используем в основном передаточные функции типовых динамических звеньев, которые имеют в числителе и знаменателе полиномы от S не выше второго порядка.

Передаточную функцию типового динамического звена в общем случае можно представить как произведение сомножителей следующего вида:

(3.12)

где – постоянные, причем >0, показатель степени может быть положительным и отрицательным целым числом, > 0, , , , .

В соответствии с видом сомножителей (3.12) в таблице 3.1 приведены типовые динамические звенья.

 







Дата добавления: 2015-04-19; просмотров: 611. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия