Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Колебательное, консервативное и апериодическое второго порядка звенья





 

Звено, которое можно описать уравнением

, ()

или в другой форме

, где , , (3.29)

или передаточной функцией

, (3.30)

называют колебательным, если ; консервативным, если (), и апериодическим звеном второго порядка, если . Коэффициент называют коэффициентом демпфирования (параметром затухания, коэффициентом колебательности), величину называют угловой частотой свободных колебаний (при отсутствии затухания), ‑ постоянная времени.

Колебательное звено ()

 

Условие означает, что корни характеристического уравнения комплексные

.

Примерами колебательных звеньев являются колебательные - цепи, управляемые двигатели постоянного тока при выполнении условия , упругие механические передачи, гироскопические элементы.

Уравнение установившегося режима звена (уравнение статики)

.

Переходная функция колебательного звена является решением дифференциального уравнения (3.29) при .

Покажем это:

Преобразуем исходное уравнение по Лапласу

,

начальные условия: , , .

Найдем ,

отсюда , , , , .

Теперь изображение переходной функции

. (3.31)

Для определения оригиналов второго и третьего слагаемых изображения приведем их к форме, представляемой в таблице оригиналов.

Преобразуем второе слагаемое:

.

Введем обозначения:

- коэффициент затухания переходного процесса, (3.32)

- частота затухающих колебаний. (3.32)

Теперь второе слагаемое примет вид:

.

По таблице изображений по Лапласу определим оригиналы

,

.

Третье слагаемое в (3.31) преобразуем к виду:

.

С учетом обозначений (3.32) третье слагаемое примет вид:

.

Оригинал этого выражения .

Окончательно, переходная функция колебательного звена

(3.33)

Весовая функция колебательного звена

, (3.34)

На рис. 3.8 приведена переходная функция колебательного звена.

 

Рис. 3.8. Переходная функция колебательного звена

По переходной характеристике можно определить параметры колебательного звена следующим образом. Коэффициент передачи определяют по установившемуся значению переходной функции

.

,

Из отношения найдем .

Частота затухающих колебаний

, где - период затухающих колебаний.

Коэффициент демпфирования звена может быть найден из выражения , а постоянная времени звена из выражения

. (3.35)

(Из выражений (3.32) имеем и , , откуда и следует (3.35)).

По переходной характеристике можно определить величину перерегулирования

. (3.36)

Можно показать, что перерегулирование зависит только от коэффициента колебательности и не зависит от постоянной времени :

(3.37)

(Берется производная , приравнивается нулю; полагая , определяется время и подставляется в (3.33), находится ; учитывая, что , определяется ).

 

Частотные характеристики звена

Выражение АФЧХ получается при подстановке в передаточную функцию звена :

. (3.38)

АЧХ: (3.39)

Умножив числитель и знаменатель (3.38) на комплексно-сопряженное знаменателю выражение, получим вещественную и мнимую частотные функции

, .

ФЧХ: изменяется монотонно от 0 до () и выражается формулой

 

(при функция меняет знак на плюс)

Рис. 3.9. Частотные характеристики колебательного звена

(значения параметров: )

 

Логарифмическая амплитудная частотная характеристика звена

. (3.40)

Частотные характеристики звена представлены на рис. 3.9.

АЧХ имеет резонансный пик при .







Дата добавления: 2015-04-19; просмотров: 1142. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия