Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интегрирующее звено с замедлением (инерциальное нтегрирующее звено)





 

Уравнение и передаточная функция звена:

, .

Частотные характеристики

АФЧХ: , , .

АЧХ: ; ФЧХ: .

ЛАЧХ: .

Переходная и весовая функции находятся из решения дифференциального уравнения звена соответственно при и . Удобно передаточную функцию представлять в виде алгебраической суммы (в виде двух параллельно включенных звеньев)

,

что позволяет определить решение дифференциального уравнения в виде суммы решений для идеального интегрирующего звена и апериодического звена первого порядка.

,

За счет постоянной времени , вместо идеального интегрирования, здесь получается интегрирование с инерционным запаздыванием. Примером такого звена является электродвигатель, если выходной величиной считать угол поворота вала двигателя.

Асимптотическая ЛАЧХ представляет собой две прямые с отрицательными наклонами – 20 дБ/дек (при ) и –40 дБ/дек (при ). ЛАЧХ проходит через точку с координатами и . Сопряжение асимптот производится на частоте .

№19

1. Идеальное дифференцирующее звено

 

Звено описывается уравнением или передаточной функцией

(3.43)

Частотные и временные функции имеют вид:

АФЧХ: , , .

АЧХ: , ФЧХ: .

ЛАЧХ: .

Временные функции: ,

, при . (3.44)

АФЧХ совпадает с положительной мнимой полуосью (в плоскости ). Сдвиг фазы не зависит от частоты и равен . ЛАЧХ есть прямая, проходящая через точку с координатами и и имеющая наклон равный . увеличивается на при увеличении частоты на одну декаду.

Примерами идеальных дифференцирующих звеньев являются: операционный усилитель в режиме дифференцирования, тахогенератор постоянного тока, если в качестве входной величины рассматривать угол поворота его ротора, а в качестве выходной – напряжение якоря .

2. Форсирующее звено

 

Звено описывается уравнением или передаточной функцией

. (3.45)

Частотные и временные характеристики имеют вид:

АФЧХ: , , ,

АЧХ: , ФЧХ: ,

ЛАЧХ: .

АФЧХ есть прямая, параллельная мнимой оси и пересекающая действительную ось в точке на плоскости .

Уравнение асимптотической ЛАЧХ форсирующего звена имеет вид

Асимптотическая ЛАЧХ при параллельна оси частот и отстоит от нее на расстоянии , а при имеет наклон .

Переходная функция ,

Весовая функция .

 







Дата добавления: 2015-04-19; просмотров: 1457. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия