Тонкослойная хроматография
Тонкослойная хроматография (ТСХ) является одним из наиболее про-стых и эффективных экспресс-методов разделения и анализа веществ в пищевых продуктах, биологических жидкостях и других объектах, не тре-бующих сложного оборудования. В то же время метод обладает высокой избирательностью и чувствительностью (низким пределом обнаружения). Этим методом можно определить 10-20 мкг вещества с точностью до 5-7%. В зависимости от природы НФ тонкослойная хроматография может быть адсорбционной и распределительной. Наиболее широко применим в ТСХ первый вариант разделения. Неподвижная твердая фаза (оксид алюминия, силикагель и др.) тонким слоем наносится на стеклянную, металлическую (алюминиевая фольга) или пластмассовую пластинку, закрепляется слой с помощью крахмала или гипса (иногда используют пластинки с незакрепленным слоем). Для хроматографирования могут использоваться готовые пластинки, выпускае-мые промышленностью, размером 5х15 или 20х20 см. На расстоянии 2 см от края пластинки на стартовую линию с помощью микропипетки или микрошприца наносят пробы анализируемого раствора (диаметр пятен 3-5 мм). После испарения растворителя край пластинки помещают в стеклянную камеру, на дно которой налит растворитель (ПФ) в количестве, достаточном для образования слоя глубиной 0,5 см. Камеру закрывают крышкой. Выбор растворителя (ПФ) зависит от природы сорбента и свойств ана-лизируемых соединений. Например, разделение хлорорганических пести-цидов на пластинке с силикагелем проводят в среде гексана. Часто приме-няют смеси растворителей из двух или трех компонентов. Так, при хроматографировании аминокислот используют смесь Н-бутанола с уксусной кислотой и водой, при анализе неорганических ионов - водные буферные растворы, создающие постоянное значение рН. При хроматографировании растворитель движется снизу вверх (восхо-дящий вариант) вдоль слоя сорбента и с разной скоростью переносит ком-поненты смеси, что приводит к их пространственному разделению. После окончания хроматографического процесса пластинку вынимают из каме-ры, отмечают линию фронта растворителя (обычно около 10 см) и высушива-ют. Если компоненты смеси окрашены, то они четко видны на пластине по-сле разделения. Неокрашенные соединения обнаруживают различными способами. Если пластину поместить в камеру с парами йода, то четко проявляются коричневые пятна для органических соединений с непредельными связями. Хроматограмму можно проявить, опрыскивая ее каким-либо реагентом, дающим с компонентами пробы окрашенные соеди-нения. В состав нанесенного слоя в готовые пластины часто вводят люми-нофор. При облучении такой пластины ультрафиолетовым (УФ) светом она флуоресцирует, а разделенные компоненты пробы видны в виде тем-ных пятен. Вещества, имеющие собственную флуоресценцию, также обна-руживают в УФ - свете (например, пестициды). Идентификацию веществ на хроматограмме осуществляют по характе-ру окраски пятен, параметру удерживания Rf и с помощью стандартных веществ (свидетелей). Величина Rf рассчитывается из экспериментальных данных по уравнению L Rf=__, (3.3.1) L где l - расстояние от стартовойлинии до центра пятна, L - расстояние, пройденное за это же время растворителем (рис. 3.3.1). Рис. 3.3.1. Хроматограмма двухкомпонентной смеси а - а: линия старта, в - в: линия фронта растворителя При стандартных условиях величина Rf является постоянной величиной, характер-ной для данного соединения. Но практика показывает, насколько трудно создавать постоянство всех факторов, от которых зависит воспроизводи-мость значений Rf. На величину Rf влияет качество и активность сорбента, его влажность, толщина слоя, качество растворителей и другие факторы, не всегда поддающиеся достаточному контролю. Рис. 3.3.2. Хроматограмма жира. I - полимеризованные и сильнополярные жиры; II - фосфолипиды, III - триглицериды 1 - говяжье мясо; 2 - свинина; 3 - свинина с 29% печени; 4 - свинина с 4% печени; 5 - свинина с 50% печени; 6 - свиная печень Поэтому наряду с величиной Rf идентификацию проводят по “свидетелю”. Стандартное вещество (свидетель), наличие которого предполагают в анализируемой смеси, наносят на линию стандарта рядом с исследуемой пробой. Таким образом, стандартное вещество хроматографируется в тех же условиях. После хроматографирования и детекции пятен сравнивают величины Rf определяемого вещества и “свидетеля”. Качественный анализ после разделения компонентов смеси методом ТСХ часто используют для определения состава пищевых продуктов. Так, на рис. 3.3.2 представлена хроматограмма жира, выделенного из мясного фарша различного состава. Хроматографирование проводили на пластинках с силикагелем в системе гександиэтиловый эфир (в соотноше-нии 3:1), пятна детектировали 10% раствором фосфорно-молибденовой кислоты, идентифицировали по голубому цвету зон на жел-том фоне пластинки. Как видно из хроматограммы, при данных условиях произошло разделение фосфолипидов и триглицеридов. По характерному составу компонентов мяса и печени можно сделать вывод о натуральности мясного фарша в пробах 1-2, и добавках к нему печени в пробах 3-5. Количественное определение в ТХС может быть проведено непосред-ственно на пластинке, иди после удаления веществ с пластинки. При непо-средственном определении на пластинке измеряют тем или иным способом площадь пятна (например, с помощью миллиметровой кальки) и по зара-нее построенному градуировочному графику находят количество вещест-ва. Зависимость между массой вещества q и площадью S на хроматограммах носит нелинейный характер и является логарифмической: S=a lg q + в, (3.3.2) где а и в эмпирические константы. Эта зависимость линейна для количеств вещества от 1 до 80-100 мкг. Рис. 3.3.3. Зависимость площади пятен на хроматограмме от количества вещества: а - хроматограмма, б - калибровочный график Для построения градуировочного графика на пластинку наносят растворы, содержащие разные количества стандартного вещества, хроматографируют, проявляют зоны и измеряют их площади (рис. 3.3.3). Более точен денситометрический метод определения веществ на хроматограммах (ошибка - 1-2%). В методе денситометрии производят измере-ние оптического поглощения проявленной хроматограммы сканирующим лучом в проходящем или отраженном свете на специальных приборах-денситометрах (рис.3.3.4.). Рис. 3.3.4. Схема денситометра. 1 - протяжный механизм; 2 - источник света; 3 - хроматограмма, 4 - фотоэлектрический преобразователь, 5 - усилитель, 6 - самописец. На денситограмме получают пики, площадь которых пропорциональна содержанию вещества в пятне. Построив с помощью стандартов калибровочный график, измеряют площадь пика компонента и по графику определяют его массу в пробе. Получают развитие также спектрофотоденситометрическое и флуориметрическое определение ве-ществ на хроматограммах. В первом случае используют специальные спектрофотоденситометры, измеряющие поглощение вещества в монохроматическом свете, во втором измеряют флюоресценцию пятна при облучении хроматограммы УФ све-том. Широкое распространение получил способ экстрагирования компо-нентов из зон подходящим растворителем. При применении этого способа на хроматограмму наносят стандартный раствор и раствор пробы. После получения хроматограммы производят ее обработку, детектируя зону стандарта, вырезают часть хроматограммы с зоной компонента пробы и производят его экстрагирование подходящим растворителем. Полученный раствор анализируют инструментальным методом, имеющим высокую чувствительность. Чаще всего применяют спектрофотометрические и фо-токолориметрические методы. Если вещество не имеет цвета или не обла-дает поглощением в УФ-области, с экстрактом проводят фотометрическую реакцию, позволяющую получить интенсивно поглощающее производное вещества. Тонкослойная хроматография находит применение при исследовании некоторых видов пищевых продуктов на безопасность. Например, для оп-ределения токсинов (афлатоксинов, микотоксинов, патулина и др.) в ара-хисе, в зерновых, овощах, фруктах, напитках; для определения пестицидов (ДДТ и др.) в растительных и животных продуктах, определения гистамина как показателя порчи рыбы. Кроме того, ТСХ часто сочетают с газовой хроматографией, электрофорезом и другими методами.
|