Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Он дает возможность разложить по факторам как относительное отклонение, так и абсолютное отклонение результативного показателя





Индексный метод основан на относительных показателях динамики, пространственных сравнений, выполнения плана, выражающих отношение фактического уровня анализируемого показателя в отчетном периоде к его уровню в базисном периоде (или к плановому или по другому).

С помощью агрегатных индексов можно выявить влияние различных факторов на изменение уровня результативных показателей в мультипликативных и кратных моделях.

К примеру возьмем индекс стоимости товарной продукции:

 

 

Он отражает изменение физического объема товарной продукции (q) и цен (р) и равен произведению этих индексов:

 

.

 

Чтобы установить, как изменилась стоимость товарной продукции за счет количества произведенной продукции и за счет цен, нужно рассчитать индекс физического объема Iq и индекс цен Ip:

 

.

В нашем примере моделирования объема валовой продукции (см. табл. 1) результативный показатель (объем валовой продукции) можно представить в виде произведения численности рабочих и их среднегодовой выработки. Следовательно, индекс валовой продукции IQ будет равен произведению индекса численности рабочих (количество) IT и индекса среднегодовой выработки IWr (качество). При условии, что , индекс валовой продукции (IQ) будет равен:

 

 

Если из числителя вышеприведенных формул вычесть знаменатель, то получим абсолютные приросты валовой продукции в целом и за счет каждого фактора в отдельности, т.е. те же результаты, что и способом цепных подстановок.

5. Интегральный метод, также как и способ цепных подстановок, применяется для измерения влияния факторов на результативный показатель в факторных моделях, отражающих функциональные зависимости. Он позволяет получить более точные результаты расчетов, не зависящие от последовательности замены базисных значений факторов на отчетные. Дополнительный прирост результативного показателя, образовавшийся от взаимодействия факторов, распределяется между ними.

Проблема разложения по факторам прироста результативного показателя, обусловленного их совместным влиянием не может быть решена простым делением его на количество факторов, так как действие каждого отдельно взятого фактора отличается по величине, масштабности, направлению воздействия неоднозначно. В интегральном методе действует логарифмический закон перераспределения факторных нагрузок при соблюдении положения независимости факторов. Одной из особенностей интегрального метода факторного анализа является принцип общего подхода к решению самых разнообразных задач вне зависимости от количества факторов, включенных в модель, а также формы связи между ними. Для решения задач факторного анализа интегральным методом необходимо использовать различные формулы для измерения влияния факторов. Та или иная формула выбирается исходя из вида факторной системы (мультипликативная, кратная, смешанная). Сложность построения формул заключается в построении подынтегральных выражений элементов структуры факторной системы, так как этот процесс является индивидуальным для каждой конкретной факторной модели. В экономическом анализе разработаны формулы для измерения влияния факторов для наиболее часто встречающихся типов факторных систем (Баканов М.И., Шеремет А.Д. «Теория экономического анализа. – М.: Финансы и статистика, 1999), некоторые из них приведены в табл. 1.2.3. Использованы следующие обозначения: ¦ - результативные показатели; x, y, z – факторы; Аx, Аy, А z - влияние соответствующих факторов на результативные показатели.

Таблица 1.2.3







Дата добавления: 2015-04-19; просмотров: 579. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия