Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Передаточные функции





Если при передаче сигнала с входа усилителя на его выход учи­тывать не только его уровень, но и фазу, то коэффициенты передачи (кроме Кр) будут являться комплексными величинами, называемыми пе­редаточными функциями (ПФ).

ПФ является исчерпывающей характеристикой линейного активного четырехполюсника (усилителя) в частотной области. Она определяется в установившемся режиме при гармоническом воздействии.

Если аргумент ПФ обозначить p = jω, то для линейных цепей с сос­редоточенными параметрами, к которым можно отнести и усилители, ПФ будет иметь вид:

 
 


(2.7)

где коэффициенты ai и bi вещественны, a m и n – целые положитель­ные числа. У физически реализуемой системы m ≤ n, так как при f [АС2] → ∞; ее коэффициент передачи стремится к конечному пределу К(∞) ≥ 0. При f [АС3] → 0 К(0) = aо/bo. Для УПТ a0 [АС4] = const, а для усилителей переменного тока aо = 0.

При разложении полиномов М(р) и N(р) на линейные множители по­лучим:

(2.8)

Здесь z1, z2,.., zm и p1,p2,..,pn – нули и полюсы ПФ, равные корням уравнений М(р)=0 и N(р)=0. Эти корни могут принимать как вещест­венные, так и попарно сопряженные комплексные значения, причем у устойчивой цепи действительные части всех корней характеристического уравнения N(р)=0 отрицательны. Вещественным значениям нулей и полюсов отвечают соответствующие частоты нулей и полюсов

fzi = -zi/2π; fpi = -pi/2π (2.9)

Если ПФ содержит хотя бы один нуль zi = 0 (fzi = 0). то такой уси­литель будет являться усилителем переменного тока.

В теории УУ ПФ применяется для оценки устойчивости схемы и для расчета и анализа переходных процессов операторным методом.

 







Дата добавления: 2015-06-12; просмотров: 441. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия