Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Передаточные функции





Если при передаче сигнала с входа усилителя на его выход учи­тывать не только его уровень, но и фазу, то коэффициенты передачи (кроме Кр) будут являться комплексными величинами, называемыми пе­редаточными функциями (ПФ).

ПФ является исчерпывающей характеристикой линейного активного четырехполюсника (усилителя) в частотной области. Она определяется в установившемся режиме при гармоническом воздействии.

Если аргумент ПФ обозначить p = jω, то для линейных цепей с сос­редоточенными параметрами, к которым можно отнести и усилители, ПФ будет иметь вид:

 
 


(2.7)

где коэффициенты ai и bi вещественны, a m и n – целые положитель­ные числа. У физически реализуемой системы m ≤ n, так как при f [АС2] → ∞; ее коэффициент передачи стремится к конечному пределу К(∞) ≥ 0. При f [АС3] → 0 К(0) = aо/bo. Для УПТ a0 [АС4] = const, а для усилителей переменного тока aо = 0.

При разложении полиномов М(р) и N(р) на линейные множители по­лучим:

(2.8)

Здесь z1, z2,.., zm и p1,p2,..,pn – нули и полюсы ПФ, равные корням уравнений М(р)=0 и N(р)=0. Эти корни могут принимать как вещест­венные, так и попарно сопряженные комплексные значения, причем у устойчивой цепи действительные части всех корней характеристического уравнения N(р)=0 отрицательны. Вещественным значениям нулей и полюсов отвечают соответствующие частоты нулей и полюсов

fzi = -zi/2π; fpi = -pi/2π (2.9)

Если ПФ содержит хотя бы один нуль zi = 0 (fzi = 0). то такой уси­литель будет являться усилителем переменного тока.

В теории УУ ПФ применяется для оценки устойчивости схемы и для расчета и анализа переходных процессов операторным методом.

 







Дата добавления: 2015-06-12; просмотров: 441. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия