Температурная нестабильность режима биполярного транзистора
Температурная нестабильность режима биполярного транзистора (БТ) в основном определяется тремя факторами: изменение обратного тока коллекторного перехода ; изменением напряжения на эмиттерном переходе; изменением статического коэффициента передачи тока базы, . Зависимость тока от температуры выражается формулой , (2.9) где - температура перехода, - значение тока при , a=0,02…0,025 для кремниевого транзистора и а=0,03…0,035 для германиевого. Поскольку на коллекторном переходе рассеивается электрическая мощность, то температура перехода всегда выше температуры окружающей среды (2.10) где - тепловое сопротивление промежутка переход – окружающая среда, а - мощность рассеяния на коллекторе. Сопротивление имеет размерность °С/Вm или °С/мВm и показывает на сколько увеличится температура перехода по сравнению с температурой окружающей среды на единицу мощности рассеяния на переходе. , (2.11) где - тепловые сопротивления переход-корпус и корпус-окружающая среда. При охлождении транзистора с помощью радиатора с тепловым сопротивлением (2.12) Ток у маломощных кремниевых транзисторов равен примерно 0,02…0,5мкА, а у германиевых по крайней мере на порядок больше. При изменении температуры меняется ток прямосмещенного эмиттерного перехода (рис.2.3). Характеристика смещается почти параллельно со скоростью приблизительно –2,2× В на 1° изменения температуры перехода, что эквивалентно появлению в цепи между базой и эмиттером напряжения , но без сдвига характеристики. Этот прием избавляет от необходимости пользоваться семейством статических характеристик при разных температурах (очень часто такое семейство просто отсутствует) и производит все расчеты температурных изменений по одной характеристике. Заменив на - и учтя технологический разброс параметров, получим (2.13) где - изменение температуры окружающей среды. Известно, что у транзистора . (2.14) Значит ток изменяется не только при изменении , но и при изменении С повышением температуры перехода параметр увеличивается на (0,3…0,4)% на 1° сверх 25° и уменьшается (0,15…0,25)% на 1° при ее понижении, считая от 25°. С учетом влияния изменения температуры перехода и технологического разброса при 10% отбраковке крайние расчетные значения оказываются равными , , (2.15) и . (2.16) Реальный БТ работающий в диапазоне температур, можно заменить идеальным, режим работы которого абсолютно стабилен, а влияние температуры на его режим учесть с помощью трех дестабилизирующих факторов , и (рис.2.4). На этом рисунке генератор тока отображает совместное влияние и на ток коллектора. Выражение для можно получить из (2.14), взяв производную от по и , полагая и , получим где Зная величины возмущающих источников и и способ (схему) подачи питающих напряжений на электроды транзистора, можно определить приращение . В общем случае (2.18) где , - коэффициенты нестабильности, характеризующие чувствительность тока коллектора соответственно к изменению , и напряжения . Эти коэффициенты имеют четкий физический смысл: - коэффициент усиления схемы по постоянному току; - проводимость прямой передачи схемы по постоянному току. Чем меньше и , тем стабильнее схема. У высокостабильных схем =1,2…2, =0,1…1мСим.
|