Требования к исходной информации
- Скласти кросворд за міфом про Прометея або питання до літературної вікторини. ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО- ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
КАФЕДРА ЭКОНОМИКО-МАТЕМАТИЧЕСКИХ МЕТОДОВ И МОДЕЛЕЙ
ЭКОНОМЕТРИКА
Тема 2. Временные ряды. (для студентов 2-го образования) ( Материалы к лекции)
ОРЛОВА И.В. 2005 Материалы к лекции по теме Временные ряды содержат разделы из учебного пособия И.В. Орловой Анализ временных рядов
Основные понятия и определения
Информационной базой для анализа экономических процессов являютсядинамические и временные ряды. Совокупность наблюдений некоторого явления (показателя), упорядоченная в зависимости от последовательности значений другого явления (признака), называют динамическим рядом. Динамические ряды, у которых в качестве признака упорядочения используется время, называют временными. В экономике и бизнесе временные ряды – это очень распространенный тип данных. Во временном ряде содержится информация об особенностях и закономерностях протекания процесса, а статистический анализ позволяет выявить и использовать выявленные закономерности для оценки характеристик процесса в будущем, т.е. для прогнозирования. Временной ряд – это набор чисел, привязанный к последовательным, обычно равноотстоящим моментам времени. Числа, составляющие временной ряд и получающиеся в результате наблюдения за ходом некоторого процесса, называются уровнями временного ряда или элементами. Под длиной временного ряда понимают количество входящих в него уровней n. Временной ряд обычно обозначают Y(t), или В общем случае каждый уровень временного можно представить как функцию четырех компонент: f (t), S (t), U (t), Где f (t) – тренд (долговременная тенденция) развития; S (t) – сезонная компонента; U (t) –циклическая компонента; В модели временного ряда принято выделять две основные составляющие: детерминированную (систематическую) и случайную. Под детерминированной составляющей временного ряда Детерминированная составляющая может содержать следующие структурные компоненты: тренд, или тенденция f (t), представляет собой устойчивую закономерность, наблюдаемую в течение длительного периода времени. Обычно тренд (тенденция) описывается с помощью той или иной неслучайной функции f тр(t) (аргументом которой является время), как правило, монотонной. Эту функцию называют функцией тренда, или просто – трендом. Сезонная компонента s(t) связана с наличием факторов, действующих с заранее известной периодичностью. Это регулярные колебания, которые носят периодический или близкий к нему характер и заканчиваются в течение года. Типичные примеры сезонного эффекта: изменение загруженности автотрассы по временам года, пик продаж товаров для школьников в конце августа – начале сентября. Спрос на пластические операции сезонный: в осенне-зимний период обращений больше. Типичным примером являются сильные колебания объема товарно-материальных запасов в сезонных отраслях Сезонная компонента со временем может меняться, либо иметь плавающий характер. Циклическая компонента u (t) – неслучайная функция, описывающая длительные периоды (более одного года) относительного подъема и спада и состоящая из циклов переменной длительности и амплитуды. Примером циклической (конъюнктурной) компоненты являются волны Кондратьева, демографические «ямы» и т.п. Подобная компонента весьма характерна для рядов макроэкономических показателей. Здесь циклические изменения обусловлены взаимодействием спроса и предложения, а также наложением таких факторов, как истощение ресурсов, погодные условия, изменения в налоговой политике и т.п. Отметим, что циклическую компоненту крайне трудно идентифицировать формальными методами, исходя только из данных изучаемого ряда. Случайная компонента В анализе случайного компонента экономических временных рядов важную роль играет сравнение случайной величины Стационарным процессом в узком смысле называется такой случайный процесс, вероятностные свойства которого с течением времени не изменяются. Он протекает в приблизительно однородных условиях и имеет вид непрерывных случайных колебаний вокруг некоторого среднего значения. Причем ни средняя амплитуда, ни его частота не обнаруживают с течением времени существенных изменений. Однако на практике чаще встречаются процессы, вероятностные характеристики которых подчиняются определенным закономерностям и не являются постоянными величинами. Поэтому в прикладном эконометрическом анализе используется понятие слабой стационарности (или стационарности в широком смысле), которое предполагает неизменность во времени среднего значения, дисперсии и ковариации временного ряда [Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики. М.: ЮНИТИ, 1998]. Случайный процесс называется стационарным в широком смысле, если его математическое ожидание постоянно и автокорреляционная функция В зависимости от вида связи между этими компонентами может быть построена либо аддитивная модель: Y (t) =f (t)+ S (t)+ U (t)+ либо мультипликативная модель: Y (t) =f (t)× S (t)× U (t)+ временного ряда. В процессе формирования значений временных рядов не всегда участвуют все четыре компоненты. Однако во всех случаях предполагается наличие случайной составляющей. Основная цель статистического анализа временных рядов – изучение соотношения между закономерностью и случайностью в формировании значений уровней ряда, оценка количественной меры их влияния. Закономерности, объясняющие динамику показателя в прошлом, используются для прогнозирования его значений в будущем, а учет случайности позволяет определить вероятность отклонения от закономерного развития и его возможную величину. Требования к исходной информации Применяемые при обработке временных рядов методы во многом опираются на методы математической статистикой, которые базируются на достаточно жестких требованиях к исходным данным (таким как однородность данных, сопоставимость, предположения о типе их распределения и т. д.). Сопоставимость достигается в результате одинакового подхода к наблюдениям на разных этапах формирования динамического ряда. Уровни во временных рядах должны иметь одинаковые: - единицы измерения; - шаг наблюдений; - интервал времени; - методику расчета; - элементы, относящиеся к неизменной совокупности. Однородность данных означает отсутствие сильных изломов тенденций, а также аномальных (т.е. резко выделяющихся, нетипичных для данного ряда)наблюдений. Аномальные наблюдения проявляются в виде сильного изменения уровня – скачка или спада – с последующим приблизительным восстановлением предыдущего уровня. Наличие аномалии резко искажает результаты моделирования. Поэтому аномальные наблюдения необходимо исключить из временного ряда, заменив их расчетными значениями Устойчивость характеризуется преобладанием закономерности над случайностью в изменении уровней ряда. На графиках устойчивых временных рядов закономерность прослеживается визуально, на графиках неустойчивых рядов изменения последовательных уровней представляются хаотичными, и поэтому поиск закономерностей в формировании значений уровней таких рядов лишен смысла. Требование полноты данных обусловливается тем, что закономерность может обнаружиться лишь при наличии минимально допустимого объема наблюдений. Следует иметь в виду, что при исследовании временных рядов экономических данных проверка выполнимости перечисленных требований в должной мере зачастую невозможна. Поэтому выводы, полученные на базе формально-статистического инструментария, должны восприниматься с осторожностью и дополняться содержательным анализом.
|