Требования к исходной информации
- Скласти кросворд за міфом про Прометея або питання до літературної вікторини. ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО- ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
КАФЕДРА ЭКОНОМИКО-МАТЕМАТИЧЕСКИХ МЕТОДОВ И МОДЕЛЕЙ
ЭКОНОМЕТРИКА
Тема 2. Временные ряды. (для студентов 2-го образования) ( Материалы к лекции)
ОРЛОВА И.В. 2005 Материалы к лекции по теме Временные ряды содержат разделы из учебного пособия И.В. Орловой Анализ временных рядов
Основные понятия и определения
Информационной базой для анализа экономических процессов являютсядинамические и временные ряды. Совокупность наблюдений некоторого явления (показателя), упорядоченная в зависимости от последовательности значений другого явления (признака), называют динамическим рядом. Динамические ряды, у которых в качестве признака упорядочения используется время, называют временными. В экономике и бизнесе временные ряды – это очень распространенный тип данных. Во временном ряде содержится информация об особенностях и закономерностях протекания процесса, а статистический анализ позволяет выявить и использовать выявленные закономерности для оценки характеристик процесса в будущем, т.е. для прогнозирования. Временной ряд – это набор чисел, привязанный к последовательным, обычно равноотстоящим моментам времени. Числа, составляющие временной ряд и получающиеся в результате наблюдения за ходом некоторого процесса, называются уровнями временного ряда или элементами. Под длиной временного ряда понимают количество входящих в него уровней n. Временной ряд обычно обозначают Y(t), или , где t= 1,2,…, n. В общем случае каждый уровень временного можно представить как функцию четырех компонент: f (t), S (t), U (t), (t), отражающих закономерность и случайность развития. Где f (t) – тренд (долговременная тенденция) развития; S (t) – сезонная компонента; U (t) –циклическая компонента; (t)– остаточная компонента. В модели временного ряда принято выделять две основные составляющие: детерминированную (систематическую) и случайную. Под детерминированной составляющей временного ряда понимают числовую последовательность, элементы которой вычисляются по определенному правилу как функция времени t. Исключив детерминированную составляющую из данных, мы получим колеблющийся вокруг нуля ряд, который может в одном предельном случае представлять случайные скачки, а в другом – плавное колебательное движение. Детерминированная составляющая может содержать следующие структурные компоненты: тренд, или тенденция f (t), представляет собой устойчивую закономерность, наблюдаемую в течение длительного периода времени. Обычно тренд (тенденция) описывается с помощью той или иной неслучайной функции f тр(t) (аргументом которой является время), как правило, монотонной. Эту функцию называют функцией тренда, или просто – трендом. Сезонная компонента s(t) связана с наличием факторов, действующих с заранее известной периодичностью. Это регулярные колебания, которые носят периодический или близкий к нему характер и заканчиваются в течение года. Типичные примеры сезонного эффекта: изменение загруженности автотрассы по временам года, пик продаж товаров для школьников в конце августа – начале сентября. Спрос на пластические операции сезонный: в осенне-зимний период обращений больше. Типичным примером являются сильные колебания объема товарно-материальных запасов в сезонных отраслях Сезонная компонента со временем может меняться, либо иметь плавающий характер. Циклическая компонента u (t) – неслучайная функция, описывающая длительные периоды (более одного года) относительного подъема и спада и состоящая из циклов переменной длительности и амплитуды. Примером циклической (конъюнктурной) компоненты являются волны Кондратьева, демографические «ямы» и т.п. Подобная компонента весьма характерна для рядов макроэкономических показателей. Здесь циклические изменения обусловлены взаимодействием спроса и предложения, а также наложением таких факторов, как истощение ресурсов, погодные условия, изменения в налоговой политике и т.п. Отметим, что циклическую компоненту крайне трудно идентифицировать формальными методами, исходя только из данных изучаемого ряда. Случайная компонента (t) - это составная часть временного ряда, оставшаяся после выделения систематических компонент. Она отражает воздействие многочисленных факторов случайного характера и представляет собой случайную, нерегулярную компоненту. Она является обязательной составной частью любого временного ряда в экономике, так как случайные отклонения неизбежно сопутствуют любому экономическому явлению. Если систематические компоненты временного ряда определены правильно, то остающаяся после выделения из временного ряда этих компонент так называемая остаточная последовательность (ряд остатков) будет случайной компонентой ряда. В анализе случайного компонента экономических временных рядов важную роль играет сравнение случайной величины с хорошо изученной формой случайных процессов - стационарными случайными процессами. Стационарным процессом в узком смысле называется такой случайный процесс, вероятностные свойства которого с течением времени не изменяются. Он протекает в приблизительно однородных условиях и имеет вид непрерывных случайных колебаний вокруг некоторого среднего значения. Причем ни средняя амплитуда, ни его частота не обнаруживают с течением времени существенных изменений. Однако на практике чаще встречаются процессы, вероятностные характеристики которых подчиняются определенным закономерностям и не являются постоянными величинами. Поэтому в прикладном эконометрическом анализе используется понятие слабой стационарности (или стационарности в широком смысле), которое предполагает неизменность во времени среднего значения, дисперсии и ковариации временного ряда [Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики. М.: ЮНИТИ, 1998]. Случайный процесс называется стационарным в широком смысле, если его математическое ожидание постоянно и автокорреляционная функция зависит только от длины временного интервала . В зависимости от вида связи между этими компонентами может быть построена либо аддитивная модель: Y (t) =f (t)+ S (t)+ U (t)+ (t); (3.4.1) либо мультипликативная модель: Y (t) =f (t)× S (t)× U (t)+ (t) (3.4.2) временного ряда. В процессе формирования значений временных рядов не всегда участвуют все четыре компоненты. Однако во всех случаях предполагается наличие случайной составляющей. Основная цель статистического анализа временных рядов – изучение соотношения между закономерностью и случайностью в формировании значений уровней ряда, оценка количественной меры их влияния. Закономерности, объясняющие динамику показателя в прошлом, используются для прогнозирования его значений в будущем, а учет случайности позволяет определить вероятность отклонения от закономерного развития и его возможную величину. Требования к исходной информации Применяемые при обработке временных рядов методы во многом опираются на методы математической статистикой, которые базируются на достаточно жестких требованиях к исходным данным (таким как однородность данных, сопоставимость, предположения о типе их распределения и т. д.). Сопоставимость достигается в результате одинакового подхода к наблюдениям на разных этапах формирования динамического ряда. Уровни во временных рядах должны иметь одинаковые: - единицы измерения; - шаг наблюдений; - интервал времени; - методику расчета; - элементы, относящиеся к неизменной совокупности. Однородность данных означает отсутствие сильных изломов тенденций, а также аномальных (т.е. резко выделяющихся, нетипичных для данного ряда)наблюдений. Аномальные наблюдения проявляются в виде сильного изменения уровня – скачка или спада – с последующим приблизительным восстановлением предыдущего уровня. Наличие аномалии резко искажает результаты моделирования. Поэтому аномальные наблюдения необходимо исключить из временного ряда, заменив их расчетными значениями Устойчивость характеризуется преобладанием закономерности над случайностью в изменении уровней ряда. На графиках устойчивых временных рядов закономерность прослеживается визуально, на графиках неустойчивых рядов изменения последовательных уровней представляются хаотичными, и поэтому поиск закономерностей в формировании значений уровней таких рядов лишен смысла. Требование полноты данных обусловливается тем, что закономерность может обнаружиться лишь при наличии минимально допустимого объема наблюдений. Следует иметь в виду, что при исследовании временных рядов экономических данных проверка выполнимости перечисленных требований в должной мере зачастую невозможна. Поэтому выводы, полученные на базе формально-статистического инструментария, должны восприниматься с осторожностью и дополняться содержательным анализом.
|