Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Окружность





Окружность радиуса R с центром в начале координат:

Уравнение касательной к окружности в произвольной точке

Параметрические уравнения:

Окружность радиуса R с центром в точке C(a; b):


Эллипс (рис. 4.14)

Пусть на плоскости заданы две точки и и дано число a (a > c). Эллипс - множество точек M плоскости, для каждой из которых сумма расстояний от точек и равна 2a. Точки и называются фокусами эллипса; - большая ось; - малая ось; O - центр; - левый и правый фокусы; - вершины; - фокальные радиусы;

Каноническое уравнение:

Эксцентриситет:

Фокальные радиусы:

Фокальный параметр:

Уравнения директрис:

Основное свойство директрис: где r - фокальный радиус любой точки эллипса; d - расстояние от нее до соответствующей (односторонней) директрисы.

Уравнение касательной в точке

Свойство касательной к эллипсу:

Уравнение нормали в точке

Уравнение диаметра (сопряженного хордам с угловым коэффициентом k):

Параметрические уравнения эллипса:

Полярное уравнение:

Площадь, ограниченная эллипсом:

Гипербола (рис. 4.15)

Пусть на плоскости заданы две точки и и дано число a (0 < a < c). Гипербола - множество точек M плоскости, для каждой из которых модуль разности расстояний от точек и равен 2a. Точки и называются фокусами гиперболы; - действительная ось; - мнимая ось; O - центр; - левый и правый фокусы; - вершины; - фокальные радиусы:

Каноническое уравнение:

Эксцентриситет:

Фокальные радиусы:

для правой ветви

для левой ветви

Фокальный параметр:

Уравнения директрис:

Основное свойство директрис: где r - фокальный радиус любой точки гиперболы; d - расстояние от нее до соответствующей (односторонней) директрисы.

Уравнение касательной в точке

Свойство касательной к гиперболе:

Уравнение нормали в точке

Уравнения асимптот:

Уравнение гиперболы, сопряженной данной

Уравнение равносторонней гиперболы:

каноническое

отнесенное к осям как к асимптотам:

Уравнение диаметра (сопряженного хордам с угловым коэффициентом k):

Параметрические уравнения гиперболы:

Полярное уравнение:

Парабола (рис. 4.16)

Пусть на плоскости заданы точка F и прямая , не проходящая через F. Парабола - множество всех тех точек M плоскости, каждая из которых равноудалена от точки F и прямой . Точка F называется фокусом, прямая - директрисой параболы; (OF) - ось, O - вершина, - параметр, - фокус, - фокальный радиус.

Каноническое уравнение:

Эксцентриситет:

Фокальный радиус:

Уравнение директрисы:

Уравнение касательной в точке

Свойство касательной к параболе: (М - точка касания; N - точка пересечения касательной с осью Ox).

Уравнение нормали в точке

Уравнение диаметра, сопряженного хордам с угловым коэффициентом k: y = p/k.

Параметрические уравнения параболы:

Полярное уравнение:

Другие формы канонического уравнения (рис. 4.17):


Общие уравнения линий второй степени

Общее уравнение

определяет одну из следующих линий:


Инварианты общего уравнения линий второй степени

Инварианты по отношению к преобразованию одной декартовой прямоугольной системы в другую:







Дата добавления: 2015-06-15; просмотров: 365. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия