Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод координат в геометрии. Алгебраические линии





Теорема 11.2. Уравнение (11.14) всегда определяет: либо окружность (при А=С), либо эллипс (при А • С > 0), либо гиперболу (при А • С < 0), либо параболу (при АС = 0). При этом возможны случаи вырождения: для эллипса (окружности) - в точку или мнимый эллипс (окружность), для гиперболы - в пару пересекающихся прямых, для параболы - в пару параллельных прямых.

Пример 11.1. Установить вид кривой второго порядка, заданной уравнением

Решение: Предложенное уравнение определяет эллипс . Действительно, проделаем следующие преобразования:

Получилось каноническое уравнение эллипса с центром в и полуосями и .

Аналитическая геометрия на плоскости

 

Метод координат в геометрии. Алгебраические линии.

 

О.1.1. Фигурой на плоскости (в пространстве) называется любая совокупность точек плоскости (пространства).

Простейшими фигурами на плоскости являются точка и прямая; в пространстве – точка, прямая, плоскость.

Фигура может быть задана либо перечислением всех ее точек, либо указанием характеристического свойства этих точек.

Ф1={А, В} – две точки А и В;

Ф2={М|М=А или М=В или А-М-В} – отрезок;

Ф3={M| =t , tÎR+} – луч;

Ф4={M| =t , tÎR} – прямая;

Ф5={M|ρ(M0, M)=r} – окружность.

Пусть на плоскости (в пространстве) задана фигура Ф={M|P(M)} и пусть на этой плоскости (в этом пространстве) задана аффинная система координат О ). Тогда каждой точке М плоскости (пространства) будет соответствовать радиус-вектор. В некоторых случаях удается найти предикат R(х,у), такой, что R(х,у) принимает значение истина тогда и только тогда, когда точка М(х,у) удовлетворяет условию Р(М). Тогда Ф определяется, как множество точек с координатами, удовлетворяющими предикату R(х,у) (или R(х,у,z)).

Ф={M(х,у)|R(х,у)} (Ф={M(х,у,z)|R(х,у,z)})

Исследуя свойства функции R(x,y) будем исследовать и свойства фигуры Ф. Этот метод исследования фигур на плоскости (в пространстве) называется методом координат в геометрии.

Отметим, что Ф={M(х,у)|R(х,у)} означает равенство двух множеств. Слева – множество точек фигуры Ф, справа – множество точек, удовлетворяющих функции R(х,у). для обоснования равенства необходимо показать: 1) если М(х,у)ÎФ, то координаты точки М удовлетворяют предикату R(х,у); 2) если координаты (х, у) удовлетворяют предикату R(х,у), то точка М(х,у)ÎФ.

Например. Рассмотрим множество ω(М0,r)={M|ρ(М0,М)=r}.

1) Покажем, что если точка М(х,у) принадлежит окружности ω(М0,r), то ее координаты удовлетворяют условию ρ(М0,М)=r.

Пусть М000).

ρ(М0,М)=| |= , ρ(М0,М)=r

Þ =r

Þ =r2 (1)

Если М(х,у)Îω(М0,r), то ее координаты удовлетворяют уравнению (1).

2) Пусть координаты точки N(x1,y1) удовлетворяют уравнению =r, то есть ρ(М0,N)=r. Следовательно, точка N лежит на расстоянии r от точки М0, то есть она лежит на окружности с центром М0 и радиуса r, Þ NÎω(М0,r).

О.1.2. В аналитической геометрии фигура называется алгебраической, если предикат, описывающий эту фигуру является алгебраическим уравнением.

Уравнение F(х,у)=0 (F(х,у,z)=0) называется алгебраическим, если F(х,у) (F(x,y,z)) является суммой членов вида ахsyt (axsytzk), где аÎR – коэффициент, х,у,z – переменные, s,t,k – натуральные числа.

s+t (s+t+k) – степень одночлена ахsyt (ахsytzk), наибольшая степень одночлена, входящего в F(х,у) (F(х,у,z)), называется степеью F(х,у) (F(х,у,z)) или порядком многочлена F(х,у) (F(х,у,z)).

Т.1.1. Понятие алгебраической фигуры и порядок алгебраической фигуры не зависят от выбора аффинной системы координат.

Без доказательства.

То есть, если фигура была алгебраической в одной системе координат, то она останется алгебраической и в другой системе координат.

 







Дата добавления: 2015-06-15; просмотров: 474. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия