Чёрная дыра» Мичелла
В ньютоновском поле тяготения для частиц, покоящихся на бесконечности, с учётом закона сохранения энергии: то есть: Пусть гравитационный радиус — расстояние от тяготеющей массы, на котором скорость частицы становится равной скорости света . Тогда Концепция массивного тела, гравитационное притяжение которого настолько велико, что скорость, необходимая для преодоления этого притяжения (вторая космическая скорость), равна или превышает скорость света, впервые была высказана в 1784 году Джоном Мичеллом в письме, которое он послал в Королевское общество. Письмо содержало расчёт, из которого следовало, что для тела с радиусом в 500 солнечных радиусов и с плотностью Солнца вторая космическая скорость на его поверхности будет равна скорости света[7]. Таким образом, свет не сможет покинуть это тело, и оно будет невидимым[8]. Мичелл предположил, что в космосе может существовать множество таких недоступных наблюдению объектов. В 1796 году Лаплас включил обсуждение этой идеи в свой труд «Exposition du Systeme du Monde», однако в последующих изданиях этот раздел был опущен. Тем не менее, именно благодаря Лапласу эта мысль получила некоторую известность[8]. После Мичелла, до Шварцшильда (1796—1915) На протяжении XIX века идея тел, невидимых вследствие своей массивности, не вызывала большого интереса у учёных. Это было связано с тем, что в рамках классической физики скорость света не имеет фундаментального значения. Однако в конце XIX — начале XX века было установлено, что сформулированные Дж. Максвеллом законы электродинамики, с одной стороны, выполняются во всех инерциальных системах отсчёта, а с другой стороны, не обладают инвариантностью относительно преобразований Галилея. Это означало, что сложившиеся в физике представления о характере перехода от одной инерциальной системы отсчёта к другой нуждаются в значительной корректировке. В ходе дальнейшей разработки электродинамики Г. Лоренцем была предложена новая система преобразований пространственно-временных координат (известных сегодня как преобразования Лоренца), относительно которых уравнения Максвелла оставались инвариантными. Развивая идеи Лоренца, А. Пуанкаре предположил, что все прочие физические законы также инвариантны относительно этих преобразований. В 1905 году А. Эйнштейн использовал концепции Лоренца и Пуанкаре в своей специальной теории относительности (СТО), в которой роль закона преобразования инерциальных систем отсчёта окончательно перешла от преобразований Галилея к преобразованиям Лоренца. Классическая (галилеевски-инвариантная) механика была при этом заменена на новую, лоренц-инвариантную релятивистскую механику. В рамках последней скорость света оказалась предельной скоростью, которую может развить физическое тело, что радикально изменило значение чёрных дыр в теоретической физике. Однако ньютоновская теория тяготения (на которой базировалась первоначальная теория чёрных дыр) не является лоренц-инвариантной. Поэтому она не может быть применена к телам, движущимся с околосветовыми и световой скоростями. Лишённая этого недостатка релятивистская теория тяготения была создана, в основном, Эйнштейном (сформулировавшим её окончательно к концу 1915 года) и получила название общей теории относительности (ОТО).[8] Именно на ней и основывается современная теория астрофизических чёрных дыр.[5] По своему характеру ОТО является геометрической теорией. Она предполагает, что гравитационное поле представляет собой проявление искривления пространства-времени (которое, таким образом, оказывается псевдоримановым, а не псевдоевклидовым, как в специальной теории относительности). Связь искривления пространства-времени с характером распределения и движения заключающихся в нём масс даётся основными уравнениями теории — уравнениями Эйнштейна.
|