Результаты. В задачнике [1] приводится задача со следующими данными:радиус скважины =10 см; радиус пласта =350 м; коэффициент проницаемости =0
В задачнике [1] приводится задача со следующими данными:радиус скважины =10 см; радиус пласта =350 м; коэффициент проницаемости =0.8 Д; динамический коэффициент вязкости =5 сП; давление на контуре питания =27.9 МПа; давление на забое скважины =7.84 МПа; центральный угол =120 ; мощность пласта =12 м. Найдем величину и дебит скважины (вычисления проводились с использованием математического пакета Wolfram Mathematica 8). В данном случае . Дебит при вышеперечисленных данных равен . Если же решать задачу предложенным в задачнике [1] методом осреднения контурного давления по всей длине окружности пласта и сведением ее к плоскорадиальной, то получим . Ответы значительно отличаются друг от друга. Это означает, что решение, приведенное в задачнике, не применимо к данной задаче.
3. Исследование дебита при разных углах Рассмотрим дебит при различных углах раскрытия проницаемого контура пласта (рис.10), полученный описанным методом с применением теории комплексного потенциала. Рис. 10 Зависимость дебита скважины от угла По графику видно, что с увеличением угла раствора увеличивается и дебит скважины , при этом зависимость имеет нелинейный характер, стремясь к дебиту скважины в круговом пласте с полностью проницаемым контуром. В случае, когда угол , движение будет плоскорадиальным. При плоскорадиальном движении векторы скорости фильтрации направлены по радиусам к оси скважины. Если на внешней границе пласта, совпадающей с контуром питания, поддерживается постоянное давление , а на забое скважины постоянное давление , пласт однороден по пористости и проницаемости, фильтрация происходит по закону Дарси, то объемный дебит скважины определится по формуле Дюпюи: Дебит, рассчитанный по данной формуле, равен = и в точности совпадает с дебитом, вычисленным с помощью комплексного потенциала.
|