Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задачи ЛП транспортного типа





  Фамилия Имя Год рождения Походный опыт Обязанности в группе
  Рыбалко Родион   УТС метеоролог
  Бабинцев Андрей   УТС Зам по снаряжению
  Веселов Максим   УТС Рем. мастер
  Шпагин Святослав   УТС штурнам
  Велькер Элина   УТС фотограф
  Гришин Миша   УТС казначей
  Шичанин Миша   УТС Командир группы
  Мичурина Вика   УТС краевед
  Ликинова Юлия   УТС Дневник похода
  Кашапова Камилла   УТС медик
  Кашапова Альбина   УТС Дневник похода
  Виноградова Елизавета   УТС Дежурный топограф
  Долгова Софья   УТС Завхоз по питанию
  Арнаутов Александр   УТС хронометрист
  Иванов-Котов В.А.   1 к.с. Заместитель руководителя
  Коняева О.Л.   1 к.с. рук руководитель

 


[1] Электронный ресурс. Режим ввода: https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%B6%D0%B8%D0%BC

[2] Электронный ресурс. Режим ввода: http://nordural.ru/article/kozhim/

[3] Белоусов А.Ю. О названии высшей вершины Урала. Режим доступа: http://www.skitalets.ru/books/vershural_belousov/

[4]Путеводитель по Полрному и Приполярному Уралу. Электронный формат документа. Режим ввода: http://www.pppsu.ru/

Задачи ЛП транспортного типа

 

Задачи линейного программирования транспортного типа образуют широкий круг задач, общим для которых является, как правило, распределение ресурсов, находящихся у m производителей (поставщиков), по n потребителям этих ресурсов.

Классическая транспортная задача имеет следующий вид.

Имеются m баз-поставщиков отправления груза (некоторого однородного ресурса), запасы которых составляют соответственно a1, a2, …, am. Имеются n заводов-потребителей грузов, потребности которых в грузах составляют соответственно b1, b2, …, bn.

Задана матрица с стоимостей доставки по каждому паре поставщик – потребитель: , где – себестоимость перевозки единицы груза от i -го поставщика до j -го потребителя.

Обозначим через xij () – объем транспортируемого груза от i -го поставщика j -му потребителю.

 

Необходимо построить оптимальный план перевозок , при котором транспортные затраты будут минимальными.

Исходные данные по задаче удобно представлять в виде следующей таблицы, которую называют таблицей поставок или транспортной таблицей.

Таблица

Таблица поставок

Потребители Поставщики B1 B2 Bn Запасы поставщиков
A1 c11 x11 c12 x12 c1n x1n a1
A2 c21 x21 c22 x22 c2n x2n a2
Am cm1 xm1 cm2 xm2 cmn xmn am
Потребности потребителей b1 b2 bn  

 

Задача линейного программирования транспортного типа называется закрытой, если суммарные запасы поставщиков равны суммарной потребности потребителей, т.е.

(1)

Если такое равенство не соблюдается, то задача является открытой.

Для того чтобы потребности всех потребителей были удовлетворены, необходимо выполнение следующей системы условий:

(2)

Аналогично, для того чтобы были задействованы все запасы складов-поставщиков, необходимо выполнение следующей системы условий:

(3)

По своей сущности искомые переменные не могут быть отрицательными величинами, т.е.

(4)

Введем функцию, отражающие суммарные транспортные затраты:

(5)

Таким образом, математическая модель данной задачи будет иметь вид:

, (6)

, (7)

, (8)

, (9)

(10)

Необходимо определить такой план перевозок , удовлетворяющий системам (6), (7), условию (9), при котором суммарные транспортные затраты будут минимальными.

Примечания:

1) Теорема 6.1. Для того чтобы транспортная задача линейного программирования имела решение, необходимо и достаточно, чтобы выполнялось условие (8).

Поэтому если транспортная задача открытого типа, то

а) при (т.е. если суммарная потребность потребителей превышает суммарные запасы складов-поставщиков) вводится фиктивный склад-поставщик, запас которого составляет:

. (6.8)

б) при (т.е. если суммарные запасы складов-поставщиков превышают суммарную потребность потребителей) вводится фиктивный потребитель, потребность которого составляет

. (6.9)

При этом стоимости перевозок для каждой фиктивной пары склад-поставщик – потребитель принимаются, как правило, равными нулю.

2) Теорема 6.2. Ранг r системы уравнений (6.3), (6.4) при условии (6.2) равен:

. (6.10)

Следовательно, опорный план (базисное решение) транспортной задачи должен содержать отличных от нуля неизвестных. Если в опорном плане число отличных от нуля компонент равно , то план является невырожденным, а если меньше – то вырожденным.

3) Рассмотренная транспортная задача является по своей сути целочисленной, так как перевозимые грузы в большинстве случаев представляют собой упаковки, ящики, контейнеры и т.д.

4) В экономико-математической модели вместо матрицы стоимостей перевозок (С) может задаваться матрица расстояний. В данном случае в качестве целевой функции рассматривается минимум суммарной транспортной работы.

 







Дата добавления: 2015-08-30; просмотров: 479. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия