Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нормальный закон распределения. В теории вероятностей и математической статистике, в различ­ных приложениях важную роль играет нормальный закон рас­пределения (закон Гаусса)





В теории вероятностей и математической статистике, в различ­ных приложениях важную роль играет нормальный закон рас­пределения (закон Гаусса). Случайная величина распределена по этому закону, если плотность вероятности ее имеет вид

где α = М(Х) — математическое ожидание случайной величины; — среднее квадратическое отклонение; следовательно, дисперсия случайной величины.

Изменение а при постоянной а не влияет на форму кривой, а лишь сдвигает ее вдоль оси абсцисс. Площадь, заключенная под кривой, согласно условию нормировки, равна единице. На рисунке 2.1 изображены три кривые. Для кривых 1 и 2 а = 0, эти кривые отличаются зна­чением σ (σ1 < σ2); кривая 3 имеет а = 0 (σ = σ2). Вычислим функцию распределения (2.19) для этого случая:

Обычно используют иное выражение функции нормального распределения. Введем новую переменную t = (x-a)/σ, следовательно, dx = σdt. Подставив эти значения в (2.23), получим

 

Значения функции Ф(t) обычно находят в специально составленных таблицах (см. [2]), так как интеграл (2.24) через элементарные функции не выражается. График функции Ф(t) изображен рисунке 2.2.На основании (2.17) можно вычислить вероятность того, что случайная величина при нормальном распределении находится в интервале (x1 x2). Без вывода, по аналогии с (2.24), укажем, что эта вероятность равна

 

 

 

 

Воспользуемся выражением (2.25) для вычисления следующих вероятностей:

 

Отметим, что Ф(-t) = 1 - Ф(t), поэтому Р = 2Ф(1) - 1. По таб­лице находим Ф(+1) = 0,8413. откуда

 

По таблице находим Ф(2) = 0,9772, откуда

 

По таблице находим Ф(3) = 0,9986. откуда

 

 

На рисунке 2.3 приведено нормальное распределение (σ = 0) и штриховкой показаны области, площади которых равны вероят­ностям 0,683 и 0,954.

Допустим, что произвольно из нормального распределения вы­бираются группы по п значений случайных величин. Для каждой группы можно найти средние значения, соответственно x1, х2,..., xi,.... Эти средние значения сами образуют нормальное распреде­ление (в отличие от изложенного выше нормального распределе­ния здесь каждому среднему значению xi будет соответствовать не вероятность, а относительная частота). Математическое ожидание такого «нового» нормального распределения равно математическому ожиданию исходного нормального распределения, а дисперсия (Dn) и среднее квадратическое отклонение (σп) отличаются соответственно в п и в √n раз относительно этих характеристик исходного распределения:

Это положение здесь не доказывается, но его можно проиллюстрировать рисунком 2.4, на котором приведены графики нормальных распределений, полученных для групп со значениями п, активными 1,4, 16, и n→∞. Рассмотрим крайние частные случаи. При п = 1 приходим к исходному нормальному распределению, потому σn = σ. При п →∞ σn → 0; фактически в этом случае «группами случайных величин» — это все исходное распределение, Других групп нет, поэтому среднее значение выражается только одним числом и оно соответствует математическому ожиданию. юсе распределение сводится к этому значению математического ожидания (на графике представлено вертикальной линией).

 







Дата добавления: 2015-08-30; просмотров: 923. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия