Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Корреляционная зависимость. Уравнения регрессии





Функциональные зависимости достаточно хорошо знакомы чи­тателю. Часто эти зависимости можно выразить аналитически. Например, площадь круга зависит от радиуса (S = пr2), ускорение тела — от силы и массы (а = F/m0) и т. д.

При изучении объектов в биологии и медицине приходится иметь дело с функциональными связями другого рода. При этом определенному значению одного признака соответствует не одно значение другого, а целое распределение значений. Такая связь называется корреляционной связью, или просто корреляцией. Корреляционная связь, например, между возрастом и ростом де­тей выражается в том, что каждому значению возраста соответст­вует определенное распределение роста (а не одно единственное значение). При этом с увеличением возраста (до определенных пределов) возрастает и среднее значение роста.

Количественную характеристику взаимосвязи изучаемых при­знаков можно дать на основании вычисления показателя силы связи между ними (коэффициента корреляции) и определения за­висимости одного признака от изменений другого (уравнения рег­рессии). Коэффициент корреляции определяет не только степень, но и направление связей между величинами. Если отсутствие функциональной зависимости между величинами условно соот­ветствует нулевой корреляции, а полная функциональная зависи­мость — корреляции, равной единице, то сила корреляционной связи, вообще говоря, измеряется промежуточными значениями (от 0 до +1). При этом при положительном коэффициенте корре­ляции с увеличением одной величины возрастает и другая. Если же коэффициент корреляции отрицателен, то возрастание одного параметра сопровождается уменьшением другого.

В простом случае при линейной зависимости между исследуе­мыми параметрами используют коэффициент корреляции Бравэ—Пирсона, вычисляемый по формуле:

Здесь п — количество пар анализируемых признаков, хв и ув — выборочные средние значения в распределениях соответствую­щих параметров, ах и ау средние квадратические отклонения. Рассчитанный по формуле (3.32) коэффициент корреляции ращений формуле (2.17), испольнивают с теоретическим, который находят в специальной таблице с учетом определенного уровня значимости и объема выборки. Входными значениями таблицы являются число пар ис­следуемых признаков и уровень значимости (0,05 или 0,01). При этом нулевая гипотеза заключается в том, что корреляцион­ной связи между исследуемыми параметрами не существует. Если получают значения коэффициента корреляции больше таблично­го, с определенной степенью вероятности полагают, что корреля­ция в генеральной совокупности отличается от нуля.

Покажем на примере, как рассчитывают коэффициент корре­ляции Бравэ—Пирсона.

Оценить взаимосвязь частоты пульса X и максимального артериаль­ного давления Y у детей:

Согласно нулевой гипотезе, корреляционной связи между изучае­мыми параметрами нет. Рассчитаем выборочные средние значения и средние квадратичные отклонения для приведенных выше выборок ис­следуемых параметров: хв = 109,6; уп = 101,8; ах = 10,29 и су = 2,81. По формуле (3.32) рассчитываем коэффициент корреляции г = 0,44. Затем обращаемся к таблице 12 и находим для шести пар признаков (п = 6), те­оретическое значение коэффициента корреляции 0,811 при уровне значимости 0,05 и 0,917 при уровне значимости 0,01. В том и другом случае нулевая гипотеза оказывается справедливой и корреляционной связи между анализируемыми признаками не существует с вероятностью 0,95 и 0,99.

Количественное представление зависимости изменений одного признака от изменений другого позволяет получить показатели регрессии. Как правило, анализ регрессии начинают с графиче­ского изображения данных. При большом числе исходных дан­ных для выявления общей закономерности вычисляются средние значения одного признака (у) в группах (классах), соответствую­щих определенному интервалу значений другого признака (х). При построении графика по усредненным данным точки на гра­фике располагаются вдоль так называемой эмпирической линии регрессии. Затем проводят подбор и составление уравнения рег­рессии. С помощью такого уравнения можно теоретически рас­считать значения, которые должен принимать один признак при определенных значениях другого (уравнение прогноза).

Если предполагается существование линейной зависимости между исследуемыми признаками (линейная регрессия), то про­водить регрессионный анализ наиболее просто. Часто при этом применяют графический метод. Для проведения линии регрессии используют прозрачную линейку, придавая ей такое положение, чтобы выше и ниже предполагаемой линии регрессии оказалось приблизительно одинаковое число эмпирических точек. На полу­ченной прямой определяют координаты двух наиболее отдален­ных точек xv у1 и х2, у2. Затем составляют систему двух уравне­ний:

Из полученной системы уравнений определяют неизвестные a и b: b = (у2 - у1)/(х2 – х2г), а = у1-Ъх1 = у2~ bх2. Наконец, при из­вестных коэффициентах а и Ь записывают уравнение прогноза, на основании которого можно рассчитать значение параметра у при известном значении х.

В настоящее время при статистическом анализе экспериментальных данных широко используются компьютерные вычисли­тельные программы, позволяющие проводить корреляционный и регрессионный анализ. Более подробно практическое применение этого вида анализа рассматривается в курсе социальной гигиены и организации здравоохранения.

РАЗДЕЛ2

Механика. Акустика

Механика называют раздел физики, в котором изучается механическое движение материаль­ных тел. Под механическим движением понимают изменение по­ложения тела или его частей в пространстве с течением времени. Механика, в основу которой положены законы Ньютона, называ­ется классической. В ней рассматриваются движения макроско­пических тел, происходящие со скоростями, много меньшими скорости света в вакууме. Вопросы данного раздела могут, в част­ности, быть использованы для следующих целей:

— — — понимания механики движения целого организма и меха­ники опорно-двигательного аппарата человека;

— — — знания механических свойств биологических тканей и жидкостей;

— — — знания общих закономерностей периодических процессов, протекающих в организме;

— — — понимания работы уха и вестибулярного аппарата как физических устройств, сердца как насоса и т. выяснения биофизического механизма действия ультразву­ка идр.

 

 

Г Л А В А 4 Некоторые вопросы биомеханики

Биомеханикой называют раздел биофизики, в котором рас­сматриваются механические свойства живых тканей и орга­нов, а также механические явления, происходящие как с целым организмом, так и с отдельными его органами. Говоря кратко, биомеханика — это механика живых систем.







Дата добавления: 2015-08-30; просмотров: 749. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия