Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Второе начало термодинамики. Энтропия





Первое начало термодинамики, являющееся, по существу, вы­ражением закона сохранения энергии, не указывает направления возможного протекания процессов. Так, например, по первому началу термодинамики, при теплообмене одинаково возможным был бы как самопроизвольный переход теплоты от тела более на­гретого к телу менее нагретому, так и, наоборот, от тела менее на­гретого к телу более нагретому. Из повседневного опыта, однако, хорошо известно, что второй процесс в природе нереален; так, на­пример, не может самопроизвольно нагреться вода в чайнике вследствие охлаждения воздуха в комнате. Другой пример: при падении камня на землю происходит его нагревание, эквивалент­ное изменению потенциальной энергии, обратный процесс — са­мопроизвольное поднятие камня только из-за его охлаждения — невозможен.

Второе начало термодинамики, так же как и первое, является обобщением данных опыта.

Существует несколько формулировок второго закона термоди­намики: теплота самопроизвольно не может переходить от тела с меньшей температурой к телу с большей температу­рой (формулировка Клаузиуса), или невозможен вечный двига­тель второго рода (формулировка Томсона), т. е. невозможен такой периодический процесс, единственным результатом которого было бы превращение теплоты в работу вслед­ствие

 
 

охлаждения тела.

В тепловой машине совершается работа за счет переданной теплоты, но при этом часть теплоты обязательно передается холодильнику. На рис. 10.4 схематически показаны соответственно невозможный (а) и возможный (б), по второму началу, периодиче­ские процессы.

Рассмотрим некоторые термодинамические понятия, которые позволяют количественно выразить второе начало термодинамики.

Процесс 1 —2 называют обратимым, если можно совершить обратный процесс 2—1 через все промежуточные состояния так, чтобы после возвращения системы в исходное состояние в окру­жающих телах не произошло каких-либо изменений.

Обратимый процесс является физической абстракцией. Все ре­альные процессы необратимы хотя бы из-за наличия силы тре­ния, которая вызывает нагревание окружающих тел. Некоторые характерные примеры необратимых процессов: расширение газа в пустоту, диффузия, теплообмен и т. д. Для возвращения систе­мы в начальное состояние во всех этих случаях необходимо совер­шение работы внешними телами.

Циклом или круговым процессом на­зывают процесс, при котором система возвращается в исходное состояние.

 



График цикла представляет собой зам­кнутую линию. Цикл, изображенный на рис. 10.5, — прямой, он соответствует тепловой машине, т. е. устройству, кото­рое получает количество теплоты от неко­торого тела — теплоотдатчика (нагрева­теля), совершает работу и

отдает часть этой теплоты другому телу — теплоприемнику (холодильнику) (рис. 10.4, б).

В этом цикле рабочее вещество (газ) в целом совершает положи­тельную работу (рис. 10.5): в процессе 1—а—2 газ расширяется, ра­бота положительна и численно равна площади под кривой 1—а—2; в процессе 2—б—1 работа отрицательна (сжатие газа) и численно равна площади под соответствующей кривой. Алгебраическое сум­мирование дает в целом положительную работу, совершенную газом за цикл. Она численно равна площади, ограниченной замкнутой кривой 1—а—2—б—1.

Коэффициентом полезного действия тепловой машины или прямого цикла называют отношение совершенной рабо­ты к количеству теплоты, полученному рабочим веществом

от нагревателя:

Так как работа тепловой машины совершается за счет количе­ства теплоты, а внутренняя энергия рабочего вещества за цикл не изменяется (AU = 0), то из первого закона термодинамики следу­ет, что работа в круговых процессах равна алгебраической сумме количеств теплоты: A = QX + Q2.

Следовательно,

Количество теплоты Qv полученное рабочим веществом, положи­тельно, количество теплоты Q2, отданное рабочим веществом хо­лодильнику, отрицательно.

Обратный цикл[2][2][2] соответствует работе холодильной машины, т. е. такой системе, которая отбирает теплоту от холодильника и передает большее количество теплоты нагревате­лю. Как следует из второго закона термодинамики, этот процесс (рис. 10.6) не может протекать сам собой, он происхо­дит за счет работы внешних тел. При этом газ совершает отрицательную ра­боту: работа сжатия в процессе 2—а—1 отрицательна, работа. В ре­зультате алгебраического расширения в процессе 1—6—2 положительна. В результате суммирова­ния получаем отрицательную работу га­за, численно равную площади, ограни­ченной кривой 2—а—1 —б—2.

Рассмотрим цикл Карно (рис. 10.7), т. е. круговой процесс, со­стоящий из двух изотерм 1—2, 3—4, которым соответствуют тем­пературы Т1 и Т21 > Т2), и двух адиабат 2—3, 4—1. В этом цик­ле рабочим веществом является идеальный газ. Передача количе­ства теплоты от нагревателя рабочему веществу происходит при температуре T1 а от рабочего вещества к холодильнику — при температуре Т2. Без доказательства укажем, что КПД обратимого цикла Карно зависит только от температур Т1 и Т2 нагревателя и холодильника:

 
 

Карно, исходя из второго начала термодинамики, доказал сле­дующие положения: КПД всех обратимых машин, работающих по циклу, состоящему из двух изотерм и двух адиабат, с нагрева­телем при температуре Тг и холодильником при температуре Т2, равны между собой и не зависят от рабочего вещества и конструк­ции машины, совершающей цикл; КПД необратимой машины меньше КПД обратимой машины.

Эти положения на основании (10.9) и (10.10) можно записать в виде

где знак «=» относится к обратимому циклу, а знак «<» — к необ­ратимому.

Это выражение представляет собой количественную формули­ровку второго начала. Покажем, что ее следствием являются обе качественные формулировки, приведенные в начале параграфа.

Допустим, что происходит теплообмен между двумя телами без совершения работы, т. е. Ql + Q2 = 0. Тогда [см. (10.11)] Т1 - Т2 > 0 и T1 > T2, что соответствует формулировке Клаузиуса: в самопро­извольном процессе теплота передается от тел с более высокой тем­пературой к телам с более низкой.

В том случае, если тепловая машина полностью затрачивает всю полученную при теплообмене энергию на совершение работы и не отдает энергию холодильнику, Q2 = 0 и из (10.11) имеем

что невозможно, так как Т1 и Т2 положительны. Отсюда следует формулировка Томсона о невозможности вечного двигателя вто­рого рода. Преобразуем выражение (10.11):

 

 

Отношение количества теплоты, полученного или отданного рабочим веществом, к температуре, при которой происходит теп­лообмен, называют приведенным количеством теплоты.

Поэтому (10.12) можно сформулировать так алгебраическая сумма приведенных количеств теплоты за цикл не больше нуля (в обратимых циклах равна нулю, в необратимых — меньше нуля).

Если состояние системы изменяется не по циклу Карно, а по некоторому произвольному циклу, то его можно представить в виде совокупности достаточно малых циклов Карно (рис. 10.8). Тогда выражение (10.12) преобразуется в сумму достаточно малых при­веденных количеств теплоты, что в пределе выразится интегралом

Выражение (10.13) справедливо для любого необратимого (знак «<») или обратимого (знак «=») цикла; dQ/T — элементарная при­веденная теплота. Кружок на знаке интеграла означает, что интег­рирование проводится по замкнутому контуру, т. е. по циклу. 1 Рассмотрим обратимый цикл (см. рис. 10.5), состоящий из двух процессов аи б. Для него справедливо равенство:

 
 

На основе (10.13) для обратимых циклов имеем

 
 

 
 

Изменив пределы интегрирования по пути б, получим

 

Последнее означает, что сумма приведенных количеств тепло­ты цри обратимом переходе системы из одного состояния в другое не зависит от процесса, а для данной массы газа определяется только начальным и конечным состояниями системы. На рис. 10.9 показаны графики различных обратимых процессов (а, б, в), общими для которых являются начальное 1 и конечное 2 состоя­ния. Количество теплоты и работа в этих процессах различны, но сумма приведенных количеств теплоты оказывается одинаковой.

Физическую характеристику, не зависящую от процесса или перемещения, обычно выражают как разность двух значений не­которой функции, соответствующих конечному и начальному со­стояниям процесса или положениям системы. Так, например, не­зависимость работы силы тяжести от траектории позволяет выра­зить эту работу через разность потенциальных энергий в конечных точках траектории; независимость работы сил электро­статического поля от траекторий заряда позволяет связать эту ра­боту с разностью потенциалов точек поля, являющихся гранич­ными при его перемещении.

 
 

Аналогично, сумму приведенных количеств теплоты для обра­тимого процесса можно представить как разность двух значений некоторой функции состояния системы, которую называют энт­ропией:

 

 

где S2 и S1 — энтропия соответственно в конечном 2 и начальном 1 состояниях. Итак, энтропия есть функция состояния систе­мы, разность значений которой для двух состояний равна сумме приведенных количеств теплоты при обратимом переходе систе­мы из одного состояния в другое.

 
 

 

 

Если процесс необратим, то равенство (10.15) не выполняется. Пусть дан цикл (рис. 10.10), состоящий из обратимого 2—б—1 и необратимого 1—а—2 процессов. Так как часть цикла необратима, то и весь цикл необратим, поэтому на основании (10.13) запишем

 

 
 

 

Согласно (10.15), тогда вместо (10.16) получим, или

 

Итак, в необратимом процессе сумма приведенных количеств теплоты меньше изменения энтропии. Объединяя правые части (10.15) и (10.17), получаем

где знак «=» относится к обратимым, а знак «>» — к необрати­мым процессам.

Соотношение (10.18) получено на основании (10.11) и поэтому также выражает второе начало термодинамики.

Установим физический смысл энтропии.

Формула (10.15) дает только разность энтропии, сама же энт­ропия определяется с точностью до произвольной постоянной:

Если система перешла из одного состояния в другое, то независи­мо от характера процесса — обратимый он или необратимый — изме­нение энтропии вычисляется по формуле (10.15) для любого обрати­мого процесса, происходящего между этими состояниями. Это обус­ловлено тем, что энтропия является функцией состояния системы.

Разность энтропии двух состояний легко вычисляется в обра­тимом изотермическом процессе:

где Q — полное количество теплоты, полученное системой в про­цессе перехода из состояния 1 в состояние 2 при постоянной температуре Т. Последнюю формулу используют при вычислении изме­нения энтропии в таких процессах, как плавление, парообразова­ние и т. п. В этих случаях Q — теплота фазового превращения. Если процесс происходит в изолированной системе (dQ = 0), то [см. (10.18)] в обратимом процессе энтропия не изменяется: S2 — S1 = 0, S = const, а в необратимом — возрастает. Это можно проиллюстрировать на примере теплообмена между двумя тела­ми, образующими изолированную систему и имеющими темпера­туру Т1 и Т2 соответственно (Т1 > Т2). Если небольшое количество теплоты dQ переходит от первого тела ко второму, то при этом энтропия первого тела уменьшается на dS1 = dQ/T1, а второго — увеличивается на dS2 = dQ/T2. Так как количество теплоты неве­лико, то можно считать, что температуры первого и второго тел в процессе теплообмена не изменяются. Полное изменение энтро­пии системы положительно:

следовательно, энтропия изолированной системы возрастает. Ес­ли бы в этой системе происходил самопроизвольный переход теп­лоты от тела с меньшей температурой к телу с большей темпера­турой, то энтропия системы при этом уменьшилась бы:

а это противоречит (10.18). Таким образом, в изолированной сис­теме не могут протекать такие процессы, которые приво­дят к уменьшению энтропии системы (еще одна формулиров­ка второго начала термодинамики).

Увеличение энтропии в изолированной системе не будет проис­ходить беспредельно. В рассмотренном выше примере температу­ры тел со временем выровняются, теплопередача между ними прекратится и наступит равновесное состояние (см. § 10.1). В этом состоянии параметры системы будут оставаться неизменными, а энтропия достигнет максимума.

Согласно молекулярно-кинетической теории, энтропию наибо­лее удачно можно охарактеризовать как меру неупорядоченности расположения частиц системы. Так, например, при уменьшении объема газа его молекулы вынуждены занимать все более опреде­ленные положения одна относительно другой, что соответствует большему порядку в системе, при этом энтропия убывает. Ког­да газ конденсируется или жидкость кристаллизуется при постоянной температуре, то выделяется теплота, энтропия убывает. И в этом случае происходит увеличение порядка в расположении частиц.

Неупорядоченность состояния системы количественно харак­теризуется термодинамической вероятностью Wтep. Для выясне­ния ее смысла рассмотрим систему, состоящую из четырех частиц газа: а, Ь, с, d (рис. 10.11). Эти частицы находятся в объеме, раз­деленном мысленно на две равные ячейки, и могут свободно в нем перемещаться.

Состояние системы, определяемое числом частиц в первой и второй ячейках, назовем макросостоянием; состояние системы, определяемое тем, какие конкретно частицы находятся в каждой из ячеек, — микросостоянием. Тогда (рис. 10.11, а) макросостоя­ние — одна частица в первой ячейке и три частицы во второй — осуществляется четырьмя микросостояниями. Макросостояние, соответствующее размещению четырех частиц равномерно по две в каждой ячейке, осуществляется шестью микросостояниями (рис. 10.11,6).

Термодинамической вероятностью называют число спосо­бов размещения частиц или число микросостояний, реали­зующих данное макросостояние.

В рассмотренных примерах Wтep = 4 в первом случае и Wтep = 6 во втором. Очевидно, что равномерному распределению частиц по ячейкам (по две) соответствует большая термодинамическая веро­ятность. С другой стороны, равномерное распределение частиц от­вечает равновесному состоянию с наибольшей энтропией. Из те­ории вероятностей ясно, что система, предоставленная самой се­бе, стремится прийти к макросостоянию, которое реализуется наибольшим количеством способов, наибольшим количеством микросостояний, т. е. к состоянию с наибольшей термодинамиче­ской вероятностью.

Заметим, что если газу предоставить возможность расширять­ся, его молекулы будут стремиться равномерно занять весь воз­можный объем, при этом процессе энтропия увеличивается. Об­ратный процесс — стремление молекул занять лишь часть объема, например половину комнаты, — не наблюдается, этому соответст­вовало бы состояние со значительно меньшей термодинамической вероятностью и меньшей энтропией.

 
 

Отсюда можно сделать вывод о связи энтропии с термодинами­ческой вероятностью. Больцман установил, что энтропия линейно связана с логарифмом термодинамической вероятности:

где k — постоянная Больцмана.

Второе начало термодинамики — статистический закон, в отличие, например, от первого начала термодинамики или вто­рого закона Ньютона.

Утверждение второго начала о невозможности некоторых процес­сов, по существу, является утверждением о чрезвычайно малой веро­ятности их, практически — невероятности, т. е. невозможности.

В космических масштабах наблюдаются существенные откло­нения от второго начала термодинамики, а ко всей Вселенной, так же, как и к системам, состоящим из малого числа молекул, оно неприменимо.

В заключение еще раз отметим, что если первый закон термо­динамики содержит энергетический баланс процесса, то вто­рой закон показывает его возможное направление. Аналогич­но тому, как второй закон термодинамики существенно дополня­ет первый закон, так и энтропия дополняет понятие энергии.







Дата добавления: 2015-08-30; просмотров: 827. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия