Студопедия — Перенос молекул (атомов) через мембраны.Уравнение Фика
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Перенос молекул (атомов) через мембраны.Уравнение Фика






Важным элементом функционирования мембран является их способность пропускать или не пропускать молекулы (атомы) и ионы. Существенно, что вероятность такого проникновения частиц зависит как от направления их перемещения, например в клетку или из клетки, так и от разновидности молекул и ионов.

Эти вопросы рассматриваются в разделе физики, относящемся - к явлениям переноса. Таким термином называют необратимые F, процессы, в результате которых в физической системе происхо­дит пространственное перемещение (перенос) массы, импульса, энергии, заряда или какой-либо другой физической величины.

К явлениям переноса относят диффузию (перенос массы вещест­ва), вязкость (перенос импульса), теплопроводность (перенос энергии), электропроводность (перенос электрического заряда). Здесь и в следующих параграфах рассматриваются наиболее существенные для биологических мембран явления: перенос вещества и перенос заряда. Как синоним переноса частиц в биофизике широкое распространение получил также термин транспорт частиц.

Выведем основное уравнение диффузии (уравнение Фика), рассматривая процесс переноса в жидкостях.

Пусть через некоторую площадку S (рис. 11.10) во всех направлениях перемещаются молекулы жидкости. Учитывая теорию: молекулярного строения жидкости (см. § 7.6), можно сказать, что молекулы пересекают площадку, перескакивая из одного положения равновесия в другое.

На расстояниях, равных среднему перемещению 5 молекул (сред­нее расстояние между молекулами жидкости), вправо и влево от площадки построим прямоугольные параллелепипеды небольшой толщины l (l <<δ). Объем каждого параллелепипеда равен Sl. Если п — концентрация молекул, то внутри

выделенных параллелепипедов имеет­ся Sin молекул. Предположим, что кон­центрация молекул изменяется в про­странстве, в левом (1) выделенном па­раллелепипеде концентрация равна n1 а в правом (2) — п2. Следовательно, в одном параллелепипеде SZnx молекул, а в другом - Sln2 молекул.

Все молекулы вследствие хаотичного их движения можно ус­ловно представить шестью группами, каждая из которых пере­мещается вдоль или против направления одной из осей коор­динат. Отсюда следует, что в направлении, перпендикулярном площадке S, вдоль оси ОХот первого параллелепипеда переска­кивает 1/6 Sln1 молекул, а противоположно оси ОХ от второго па­раллелепипеда перескакивает 1/6 Sln2 молекул.

 
 

Время Δt «пролета» этими молекулами площадки S может быть найдено следующим образом. Предположим, что все молеку­лы из выделенных объемов движутся с одинаковыми средними скоростями <v>. Тогда молекулы в объеме 1 или 2, дошедшие до площадки S, пересекают ее в течение промежутка времени

Подставляя в ( 11.1)выражение для средней скорости ύ из (7.20), получаем

Δt=(l/δ)*τ (11.2)

 
 

где т — среднее время «оседлой жизни» молекулы, оно может рассматриваться как среднее время перескока. «Баланс» переноса молекул через площадку S за промежуток времени Δ t равен

 
 

Умножая (11.3)на массу т отдельной молекулы и деля на Δ t, находим массовый поток сквозь площадку S:

 
 

т. е. масса вещества, которая за 1 с переносится через площадку S. Изменение концентрации п2 - п1 молекул можно представить как произведение dn/dxна расстояние 2δ между выделенными объ­емами:

 

 
 

В уравнении (11.4) заменим Δ t согласно (11.2)и (п2 - п1) со­гласно (11.5):

Отношение потока к площади S, через которую он переноситься, называется плотностью потока:

 
 

 
 

Произведение массы молекулы на их концентрацию есть плотность вещества (парциальная плотность):

 

Это есть уравнение диффузии (уравнение Фика), которое обычно записывают в виде:

 
 

Знак «-» показывает, что суммарная плотность потока вещества при диффузии направлена в сторону уменьшения плотности (в сторону, противоположную градиенту плотности), Dкоэффи­циент диффузии, применительно к рассмотренному примеру диффузии в жидкости он равен

 

Как видно из ( 11.10),единица измерения коэффициента диффу­зии [м2/с].

Уравнение диффузии можно записать не только для плотности
массового потока кг/(м2*с), но и для плотности потока частиц 1/(м2*с) и плотности потока вещества моль/(м2*с), при этом в уравнении (11.9) вместо градиента плотности следует использовать соот­ветственно градиент концентрации или градиент молярной концентрации

 
 

А. Эйнштейн показал, что коэффициент диффузии пропорционален температуре:

 

 
 

И поэтому вместо (11.11) имеем

 
 

В формуле (11.12) и далее ит — подвижность диффундирующих молекул (частиц), выраженная для моля. Вообще говоря, подвиж­ностью диффундирующей частицы (молекулы, атома, иона, электрона) и называют коэффициент пропорциональности между скоростью v частицы и силой f, двигающей частицу, в том случае, когда на частицу не действуют другие силы (например, трение или соударение с другими частицами) и она перемещается равномерно:

 
 

Как видно из (11.14), единица подвижности 1 м/(с • Н). Величи­ны um и u связаны через постоянную Авогадро:

 
 

Преобразуем уравнение (11.9) применительно к биологической мембране. Будем считать, что концентрация частиц, диффунди­рующих через мембрану, изменяется в мембране по линейному закону (рис. 11.11). Молярные концентрации частиц внутри и вне клетки соответственно равны ci и с0. Молярная концентрация этих же частиц в мембране изменяется от внутренней к наружной ее части соответственно от сmi до см0. Учитывая линейное измене­ние концентрации молекул, запишем

 
 

где I — толщина мембраны, тогда вместо (11.11) имеем

 
 

Практически доступнее определить молярные концентрации час­тиц не внутри мембраны (cMi и см0), а вне мембраны: в клетке (сi) и снаружи клетки (с0). Считают, что отношение граничных значенийконцентраций в мембране равно отно­шению концентраций в прилегающих к мембране слоях: см0Mi = co/ci, откуда

 
 

где k — коэффициент распределения вещества (частиц) между мембраной и окружающей средой (обычно водная фаза). Из (11.18) следует

 

Подставляя (11.19) в (11.17), имеем

       
   

Пусть

 

 
 

где Ркоэффициент проницаемости. В результате получаем уравнение для плотности потока вещества при диффузии через биологическую мембрану:

 
 

Уравнение Нернста—Планка. Перенос ионов через мембраны

 

Как известно, на мембране существует разность потенциалов, следовательно, в мембране имеется электрическое поле. Оно ока­зывает влияние на диффузию заряженных частиц (ионов и элект­ронов). Между напряженностью поля Е и градиентом потенциала dφ/dx существует известное соотношение (см. § 12.1):

 
 

Заряд иона равен Ze. На один ион действует сила f=Ze(dφ/dx); сила, действующая на 1 моль ионов, равна

где F — постоянная Фарадея, F = eNA.

 
 

Скорость направленного движения ионов пропорциональна действующей силе [см. (11.4), (11.5)]:

Чтобы найти поток вещества (ионов), выделим объем электролита (рис. 11.12) в виде прямоугольного параллелепипеда с ребром, численно равным скорости ионов. Все ионы, находящиеся в параллелепипе­де, за 1 с пройдут через площадку S. Это и будет поток Ф. Число молей этих ионов

 

 
 

можно найти, умножая объем параллелепипеда (vS) на молярную концентрацию ионов с:

 
 

Плотность потока вещества найдем, используя формулы (11.24) и (11.25):

 
 

В общем случае перенос ионов определяется двумя факторами: неравномерностью их распределения, т. е. градиентом концентра­ции [см. (11.11)], и воздействием электрического поля [см. (11.26)]:

Это уравнение НернстаПланка. Используя выражение для подвижности (11.12), преобразуем уравнение (11.27) к виду

 
 

Это другая форма записи уравнения Нернста—Планка

 

Используем уравнение Нернста—Планка для установления за­висимости плотности диффузионного потока от концентрации ионов и от напряженности электрического поля. Предположим, система находится в стационарном состоянии, т. е. плотность по­тока Jпостоянна. Электрическое поле в мембране примем за од­нородное, следовательно, напряженность поля одинакова, а по­тенциал линейно изменяется с расстоянием. Это позволит считать, что , где φм — разность потенциалов на мембране.

Упростим запись слагаемого в уравнении (11.28):

       
   

где

— — —
 
 

вспомогательная величина (безразмерный потенциал). С уче­том (11.29) получим уравнение Нернста—Планка в виде

 
 

Разделим переменные и проинтегрируем уравнение:

 
 

Потенцируя (11.31), получаем

 
 

откуда

 

 
 

Преобразуем формулу (11.32), учитывая выражения (11.19) и (11.20):

 
 

Вообще говоря, формула (11.33) справедлива как для положи­тельных (Z > 0, у > 0), так и для отрицательных {Z < 0, ψ < 0) ионов. Однако для отрицательных ионов целесообразно видоизме­нить это выражение, подставив в него отрицательное значение безразмерного потенциала:

 
 

Разделим числитель и знаменатель этого выражения на е:

При использовании этой формулы необходимо помнить, что отри­цательные значения Z и ψ уже учтены в самой формуле, т. е. ψ— положительная величина.

Уравнения (11.33) и (11.34) устанавливают связь плотности стационарного потока ионов с тремя величинами: 1) проницаемо­стью мембран для данного иона, которая характеризует взаимо­действие мембранных структур с ионом; 2) электрическим полем; 3) молярной концентрацией ионов в водном растворе, окружаю­щем мембрану i и с0).

Проанализируем частные случаи уравнения (11.33):

 
 

а) ψ = 0, что означает либо Z = 0 (нейтральные частицы), либо отсутствие электрического поля в мембране (φм = 0), либо и то, и другое:

 

Найдем пределы отдельных сомножителей.

1. Эту неопределенность можно раскрыть по пра­вилу Лопиталя:

2.Отсюда получаем, как и следовало ожидать, уравнение (11.21):

б) одинаковая молярная концентрация ионов по разные сторо­ны от мембраны (ci = с0 = с) при наличии электрического поля:

 
 

Это соответствует электропроводимости в электролите (см. § 12.9). Для нейтральных частиц (Z = 0 и ψ=0) J = 0;

в) если мембрана непроницаема для частиц (Р = 0), то, естест­венно, плотность потока равна нулю.







Дата добавления: 2015-08-30; просмотров: 1027. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия