Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Моменты распределения и средние молекулярные массы





 

Определение понятия средней ММ полимера при непрерывном распределении базируется на теории случайных величин, каковыми и являются значения ММ макромолекул для большинства полимеризационных процессов. В теории случайных величин существует понятие момента распределения случайной величины ω, который, применительно к рассматриваемому случаю, выражается следующим образом:

 

(1.8)

 

где n - любое целое число.

По определению, отношение любого момента к предыдущему равно среднему значению случайной величины:

 

(1.9)

 

Таким образом, согласно теории случайных величин, существует множество значений средних ММ полидисперсного полимера с непрерывным распределением. Практически используют первые три члена ряда средних ММ:

 

(1.10)

(1.11)

. (1.12)

тогда

(1.13)

 

Далее, учитывая (1.7) и (1.13), получаем

 

(1.14)

 

Выражение (1.13) по содержанию аналогично (1.5), следовательно, первое выражает среднейисловую ММ. То же самое можно сказать о (1.14) и (1.6), следовательно, (1.14) выражает среднемассовую ММ полимера. называется z - средней или среднеседиментационной ММ. Эта характеристика не имеет такого наглядного истолкования, как среднечисловая и среднемассовая ММ.

Величины , , находятся экспериментально. Так, определяется через так называемые коллигативные свойства растворов полимеров, т.е. методами осмометрии, эбуллиоскопии, криоскопии, а также по концевым группам; определяется методами светорассеяния, седиментации и гель-хроматографии, - методом равновесной седиментации. На практике широкое распространение получил вискозиметрический метод определения ММ, который приводит к средневязкостной ММ - , близкой к .

 







Дата добавления: 2015-08-17; просмотров: 579. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия