Расстояние от точки до плоскости
Предложение 11.1 Пусть плоскость задана уравнением и дана точка . Тогда расстояние от точки до плоскости определяется по формуле
Доказательство. Расстояние от точки до плоскости -- это, по определению, длина перпендикуляра , опущенного из точки на плоскость (рис. 11.9).
Рис.11.9.Расстояние от точки до плоскости
Вектор и нормальный вектор n плоскости параллельны, то есть угол между ними равен 0 или , если вектор n имеет направление противоположное, указанному на рис. 11.9. Поэтому Откуда
Координаты точки , которые нам неизвестны, обозначим . Тогда . Так как , то . Раскрыв скобки и перегруппировав слагаемые, получим
Точка лежит на плоскости , поэтому ее координаты удовлетворяют уравнению плоскости: . Отсюда находим, что . Подставив полученный результат в формулу (11.9), получим . Так как , то из формулы (11.8) следует формула (11.7).
|