Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Угол между плоскостями





Пусть плоскости и заданы соответственно уравнениями и . Требуется найти угол между этими плоскостями.

Плоскости, пересекаясь, образуют четыре двугранных угла (рис. 11.6): два тупых и два острых или четыре прямых, причем оба тупых угла равны между собой, и оба острых тоже равны между собой. Мы всегда будем искать острый угол. Для определения его величины возьмем точку на линии пересечения плоскостей и в этой точке в каждой из плоскостей проведем перпендикуляры и к линии пересечения. Нарисуем также нормальные векторы и плоскостей и с началами в точке (рис. 11.6).

 

Рис.11.6.Угол между плоскостями

 


Если через точку провести плоскость , перпендикулярную линии пересечения плоскостей и , то прямые и и изображения векторов и будут лежать в этой плоскости. Сделаем чертеж в плоскости (возможны два варианта: рис. 11.7 и 11.8).

 

Рис.11.7.Угол между нормальными векторами острый

 


 

Рис.11.8.Угол между нормальными векторами тупой

 


В одном варианте (рис. 11.7) и , следовательно, угол между нормальными векторами равен углу , являющемуся линейным углом острого двугранного угла между плоскостями и .

Во втором варианте (рис. 11.8) , а угол между нормальными векторами равен . Так как

то в обоих случаях .

По определению скалярного произведения . Откуда

и соответственно

(11.4)


Так как координаты нормальных векторов известны, если заданы уравнения плоскостей, то полученная формула (11.4) позволяет найти косинус острого угла между плоскостями.

Если плоскости перпендикулярны, то перпендикулярны и их нормальные векторы. Получаем условие перпендикулярности плоскостей:

(11.5)


Если плоскости параллельны, то коллинеарны их нормальные векторы. Получаем условие параллельности плоскостей

(11.6)


где -- любое число.

У гол между прямой и плоскостью

 

Пусть прямая d - не перпендикулярна плоскости θ;

d ′− проекция прямой d на плоскость θ;

Наименьший из углов между прямыми d и d ′ мы назовем углом между прямой и плоскостью.

Обозначим его как φ=(d,θ)

Если d ⊥θ, то (d,θ)=π/2

Oijk →− прямоугольная система координат.

Уравнение плоскости:

θ: Ax + By + Cz + D =0


Считаем, что прямая задана точкой и направляющим вектором: d [ M 0, p →]

Вектор n →(A, B, C)⊥θ

Тогда остается выяснить угол между векторами n → и p →, обозначим его как γ=(n →, p →).

Если угол γ<π/2, то искомый угол φ=π/2−γ.

Если угол γ>π/2, то искомый угол φ=γ−π/2

sinφ=sin(2π−γ)=cosγ

 

sinφ=sin(γ−2π)=−cosγ


Тогда, угол между прямой и плоскостью можно считать по формуле:

sinφ=∣cosγ∣=∣ ∣ Ap 1+ Bp 2+ Cp 3∣ ∣ √ A 2+ B 2+ C 2√ p 21+ p 22+ p 2







Дата добавления: 2015-08-17; просмотров: 664. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия