Краткие сведения из теории. По мере удаления ультразвуковой волны от источника колебаний ее амплитуда, давление и интенсивность уменьшаются по закону экспоненты
По мере удаления ультразвуковой волны от источника колебаний ее амплитуда, давление и интенсивность уменьшаются по закону экспоненты, что обусловлено затуханием. Оно предопределяется физико-механическими характеристиками среды и типом волны и учитывается коэффициентом затухания d. Коэффициент d, 1/м, складывается из коэффициентов поглощения dп и рассеяния dр: d = dп + dр. (2.1)
При поглощении ультразвуковой волны вследствие неидеальной упругости межмолекулярных сил часть потока звуковой энергии переходит в тепловой поток за счет внутреннего трения и теплопроводности среды. Коэффициент поглощения dп в твердых средах (металлы, стекло) пропорционален частоте f колебаний волны и температуре среды. Чем больше частота ультразвука, тем больше циклов колебаний в единицу времени и тем больше потери при переходе энергии ультразвука в тепло. С увеличением температуры практически все материалы увеличивают свою вязкость, при этом слабеют их упругие свойства, что ведет к росту dп. При рассеянии поток звуковой энергии остается звуковым, но уходит из направленно-распространяющегося пучка. Металлы, применяемые на практике, имеют зернистую структуру. Размеры зерен зависят от химического состава, вида механической и термической обработки деталей. Затухание волн в них предопределяется двумя факторами – рефракцией и рассеянием – вследствие анизотропии механических свойств. В результате рефракции фронт волны отклоняется от прямолинейного направления распространения и амплитуда принимаемых сигналов резко падает. Кроме того, волна, падающая на поверхность границы зерна, испытывает частичное отражение, преломление ультразвука и трансформацию, что и определяет механизм рассеяния. Рассеяние в отличие от рефракции приводит не только к ослаблению сигнала, но и к образованию шумов. Явление рассеяния тем сильнее, чем больше средний размер зерна по сравнению с длиной ультразвуковой волны. Явления поглощения и рассеяния ослабляют ультразвуковую волну тем сильнее, чем больший путь в среде она проходит. При этом амплитуда колебаний и звуковое давление снижаются в еd раз на каждую единицу длины пути r, проходимого волной, а интенсивность, как энергетическая характеристика, – в е2d раз, т. е. (2.2)
Обычно работа с ПЭП при дефектоскопировании осуществляется в дальней зоне его акустического поля, основной характеристикой которой является равномерное убывание давления при удалении от излучателя, поэтому к уменьшению величин x, Р, I должно добавляться уменьшение от раскрытия ультразвукового луча в дальней зоне. Это уменьшение, вызываемое так называемым дифракционным расхождением ультразвукового луча, обратно пропорционально расстоянию r от ПЭП до отражателя:
(так как ), (2.3)
где Ld – длина ближней зоны ПЭП; 2а – диаметр его пьезопластины.
Например, для звукового давления Р на расстоянии r от ПЭП можно записать: . (2.4)
Так как давление Р в акустическом законе Ома эквивалентно электрическому напряжению U на пьезопластине ПЭП, то амплитуду зондирующих и отраженных сигналов, с которыми оперируют при работе с дефектоскопом, обозначают через U с соответствующими индексами. Тогда для амплитуды сигнала ультразвуковой волны в среде на расстоянии r от ПЭП с учетом уравнения (2.4) можно записать: . (2.5)
|