Гидравлическое сцепление.
Гидромуфта, в которой крутящий момент передается гидродинамическим (скоростным) напором жидкости, циркулирующей между ведущими и ведомыми деталями, называется гидравлическим сцеплением. Гидромуфта на автомобилях в качестве самостоятельного сцепления не применяется, так как не обеспечивает полного выключения (ее «ведет»), что затрудняет переключение передач. В связи с этим при использовании гидромуфты последовательно с ней устанавливается фрикционное сцепление, которое предназначено только для переключения передач. При этом в фрикционном сцеплении устанавливаются более слабые нажимные пружины, что облегчает выключение сцепления.
При вращении коленчатого вала двигателя вращается насосное колесо 1. Жидкость с его лопастей под действием центробежной силы переносится на лопасти турбинного колеса (показано стрелками) и приводит его и ведущий диск 3 фрикционного сцепления во вращение. Таким образом, передача крутящего момента происходит посредством жидкости, и длительное буксование не вызывает усиленного нагрева и повышенного изнашивания деталей гидромуфты. Гидромуфта обеспечивает плавную передачу крутящего момента, снижает динамические нагрузки в трансмиссии и поглощает крутильные колебания, повышает устойчивость работы двигателя при малой скорости движения, облегчает управление автомобилем и повышает его проходимость. Однако гидромуфта имеет низкий КПД и ухудшает топливную экономичность автомобиля. При установке гидромуфты потери максимальной мощности двигателя составляют до 3 % из-за нагрева рабочей жидкости. Кроме того, применение гидромуфты приводит к увеличению сложности, металлоемкости и стоимости трансмиссии. Электромагнитные сцепления. Электромагнитным называется сцепление, в котором сжатие ведущих и ведомых деталей осуществляется электромагнитными силами. Электромагнитные сцепления являются постоянно разомкнутыми. Схема электромагнитного фрикционного сцепления представлена на рис. 4.30. Нажимной диск 2 соединен пальцами с диском 4, в котором находится электромагнит 8. К электромагниту подводится ток от генератора через щетки 7 и контактные кольца 5. Якорь 3 электромагнита закреплен на кожухе 1 сцепления, который связан с маховиком 11 двигателя.
При малой частоте вращения коленчатого вала двигателя сцепление выключено пружинами 9. При увеличении частоты вращения коленчатого вала подводимый ток к электромагниту создает магнитное поле и электромагнит притягивается к якорю. Вместе с электромагнитом перемещается нажимной диск 2, который прижимает ведомый диск 10 к маховику 11 двигателя, и сцепление включается. При переключении передач сцепление выключается устройством, которое находится в рычаге переключения передач и прерывает поступление тока в электромагнит. Муфта 6 предназначена для блокировки сцепления при пуске двигателя буксированием автомобиля. Электромагнитное порошковое сцепление представлено на рис. 4.31. Ведущими деталями сцепления являются маховик 1 двигателя и магнитопроводы 2, прикрепленные к маховику болтами, ведомыми частями — диски 8 из немагнитного материала, приклепанные к ступице, установленной на шлицах первичного вала коробки передач. К дискам прикреплены два магнитопровода 6 и 7. В картер 9 сцепления запрессован магнитопровод 3 с обмоткой возбуждения 4, один конец которой соединен с массой автомобиля, а другой — с выводом 5. Магнитопроводы 2, 6 и 7 разделены зазорами, которые заполнены ферромагнитным порошком (жидким или из коррозионно-стойкой стали), обладающим высокими магнитными свойствами. При отсутствии тока в обмотке возбуждения сцепление выключено, так как между его ведущими и ведомыми деталями отсутствует силовая связь. При подведении тока к обмотке возбуждения создается магнитное поле. Под его воздействием частицы ферромагнитного порошка притягиваются друг к другу и одновременно к магнитопроводам 2, 6 и 7. В результате между ведущими и ведомыми деталями сцепления создается силовая связь, которая зависит от силы тока, поступающего в обмотку возбуждения. При малой силе тока в обмотке возбуждения сцепление пробуксовывает, что необходимо при трогании автомобиля с места. При увеличении силы тока в обмотке возбуждения буксование сцепления уменьшается до полной блокировки ведущих и ведомых деталей, и сцепление включается. Электромагнитные сцепления относятся к сцеплениям с автоматическим управлением, у которых педаль сцепления на автомобиле обычно отсутствует. Такие автомобили называются автомобилями с двухнедельным управлением. Автоматическое управление сцеплением может быть обеспечено применением вакуумного, пневматического, гидравлического, электрического или комбинированного приводов. Контрольные вопросы: 1. Что представляет собой сцепление и для чего оно предназначено? 2. Какие бывают сцепления по связи между ведущими и ведомыми деталям, по числу ведомых дисков, по созданию нажимного усилия и по приводу? 3. Из каких основных частей состоят однодисковое и двухдисковое сцепления и как в них передается крутящий момент от ведущих к ведомым деталям? 4. На каких автомобилях и почему имеют наибольшее применение одно- и двухдисковые сцепления с различными типами нажимных пружин и приводов управления?
|