Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Липиды и жирные кислоты.





 

Особенности липидного состава Спирулины.

Все глицериды, входящие в состав мембран живых организмов, обладают следующими тремя молекулярными признаками:

-полярная «голова» (определяющая класс липида),

-состав жирных кислот (разной степени насыщенности),

-характер распределения радикалов жирных кислот каждого типа при углеродных атомах глицеринового скелета. На основе распределения различают так называемые молекулярные виды липидов.

 

Рис.15. Основные виды липидов, встречающиеся в спирулине.

(R-жирнокислотный радикал).

 

В спирулине, как в цианобактериях, по полярной части молекулы можно различить три разных типа гликолипидов и один фосфолипид (см. рис. 15): моно- и дигалактозилдиацилглицерин (MGDG (1) и DGDG (2)), сульфоквиновозилдиацилглицерин (SQDG) (3) и фосфатидилглицерин (PG) (4).

Для липидов цианобактерий является характерным такое распределение жирных кислот, когда первый и второй углеродные атомы глицеринового скелета этерифицированы С18 и С16 жирнокислотными радикалами соответственно. 1-С18-2-С16 липидам было дано общее название «прокариотичесские липиды», поскольку они являются типичным молекулярным видом липидов, встречающихся у цианобактерий, которые относятся к прокариотическим фотосинтезирующим микроорганизмам (рис. 16).

 

Рис.16. Распределение жирнокислотных радикалов по первому и второму положениям глицеринового скелета в прокариотических липидах.

 

В мембранах же водорослей и высших растений наблюдается иное распределение жирно-кислотных радикалов. У этих организмов, которые являются эукариотами, молекулы липидов представлены в виде глицеринового скелета, этерифицированного по первому и второму углеродным атомам С18 жирнокислотными остатками. По аналогии, 1-С18-2С18 липиды были названы эукариотическими (рис.17).


Рис.17. Распределение жирнокислотных радикалов по первому и второму положениям глицеринового скелета в эукариотических липидах.

 

Тем не менее подобная классификация липидов на основе распределения жирнокислотных радикалов является весьма условной, так как известно,что так называемые эукариотические липиды могут присутствовать в прокариотических организмах.

Особенности жирнокислотного состава липидов Спирулины.

Как известно, основными гидрофобными компонентами липидов являются высшие жирные кислоты, присутствующие в виде сложных эфиров или амидов. В высших жирных кислотах присутствуют ненасыщенные связи различных типов. В зависимости от числа присутствующих двойных связей полиненасыщенные кислоты подразделяются на моноеновые, диеновые, триеновые, тетраеновые и т.д., объединяемые под названием полиеновых жирных кислот (ПЖК).

Полиеновые жирные кислоты, присутствующие в клетках нашего организма, либо поступают с пищей, либо являются производными. «Незаменимые» жирные кислоты, не синтезируются животными клетками и должны поступать в организм из растительных источников. К ним относятся линолевая кислота (5), присутствующая в семенах и линоленовая кислота (6), присутствующая в листьях. Они относятся к двум семьям или рядам, различающимся по положению первого ненасыщенного углеродного атома, причём углеродная цепь нумеруется, начиная с концевой метильной группы (рис. 18).

Рис.18. Основные полиеновые жирные кислоты.

 

Сокращённое обозначение полиеновых жирных кислот включает число углеродных атомов в молекуле, число двойных связей и положение первого ненасыщенного углеродного атома. Каждый ряд состоит из полиеновых жирных кислот, отличающихся по длине углеродной цепи и числу двойных связей. В основе двух рядов лежат две растительные полиеновые жирные кислоты: незаменимая линоленовая кислота (или а-линоленовая) 18:3w3 (6), незаменимая линолевая кислота 18:2w6 (5). g-линоленовая кислота, изомер а-линоленовой, синтезируется животными клетками из линолевой кислоты и принадлежит к w6 ряду. Следует отметить, что взаимопревращения между двумя рядами не наблюдаются. Особенностью жирнокислотного состава липидов Спирулины платенсис является высокое содержание полиеновых жирных кислот, принадлежащих к w6 ряду, а именно незаменимой линолевой кислоты 18:2w6 и g-линоленовой кислоты 18:3w6, а также очень небольшое количество а-линоленовой кислоты. Содержание основных жирных кислот в спирулине платенсис приведено в таблице 5, хотя сразу необходимо оговориться, что жирнокислотный состав находится в тесной зависимости от условий I культивирования. Важность жирнокислотного состава Спирулины платенсис становится очевидной, если учесть, что недостаток линолевой кислоты приводит к нарушениям роста, кожным заболеваниям и повышенной подверженности инфекционным заболеваниям, а с недостатком линоленовой кислоты связаны нарушения зрения и нервной системы. Детально роль полиеновых жирных кислот, входящих в состав Спирулины платенсис, будет рассмотрена далее.

 

Таблица 5.

Жирнокислотный состав Спирулины платенсис.

 

Гамма-линоленовая кислота (GLA).

Спирулина считается одним из главных источников этой необыкновенно важной кислоты. GLA относится к группе жиров омега-6 и является предшественником стероидных гормонов. Если быть более точным, то из гамма-линоленовой кислоты образуются активные вещества - простагландины, а уж те, в свою очередь, продуцируют гормоны.

 

Рис.19. Линоленовая кислота.

 

Влияние GLA на организм столь многообразно, что оно заслуживает особого рассмотрения.

В первый период использования GLA применялась у женщин для лечения предменструального синдрома и климактерических нарушений. Но в дальнейшем диапазон её применения значительно расширился, и сегодня основными показаниями к использованию GLA считаются атеросклероз, избыточный холестерол, гипертония и артрит. Она также успешно справляется с проблемами кожи, укрепляет ногти. Приём GLA повышает защитные силы и вызывает заметное улучшение самочувствия у людей с синдромом хронической усталости. Имеются свидетельства о помощи больным рассеянным склерозом.

Гамма-линоленовую кислоту очень сложно получить из пищи. В младенческом возрасте она поступает в организм ребёнка с материнским молоком. И всё же самым богатым природным источником GLA является Спирулина, содержащая более 1 % этого суперлечебного продукта в сочетании со многими другими синергически действующими компонентами.

 

Структурная и функциональная роль полиеновых жирных кислот Спирулины платенсис.

Полиеновые жирные кислоты, производные незаменимых линолевой и линоленовой кислот, играют структурную и функциональную роль как составляющие молекул фосфолипидов в клеточной мембране. В отличие от насыщенных жирных кислот, цис-ненасыщенные жирные кислоты, обладающие громоздким пространственным строением, обуславливают жидкое состояние клеточной мембраны. Недостаток линолевой кислоты нарушает подвижность поверхностных белков периферической плазменной мембраны лимфоцитов и их связывание с антигенами; ослабевает иммунный ответ. Причём, клеточный ответ Т- и В-лимфоцитов моделируется жирными кислотами по-разному: обычно Т-лимфоциты более чувствительны, чем В-лимфоциты.

 

Незаменимые полиеновые жирные кислоты и иммунный ответ.

Человеческая защита от инородных веществ или патогенных живых клеток включает: информирование, активацию, пролиферацию и профессиональное действие иммунной системы, а именно лимфоцитов и макрофагов. Защита состоит из клеточно-опосредованного ответа (Т-лимфоциты) и гуморального ответа (В-лимфоциты, плазматические клетки, продуцирующие специфические антитела). Наши иммуннокомпетентные клетки действуют в сотрудничестве с фагоцитирующими клетками и «клетками-убийцами», цель которых - уничтожение чужеродных клеток. Как известно, качественный и количественный составы жирных кислот, входящих в молекулу липидов, влияют на функциональное действие клеток иммунной системы. Полиеновые жирные кислоты, в частности, арахидоновая кислота 20:4 w6 (8), производная линолевой кислоты, является предшественником медиаторов, которые модулируют ответ (пролиферацию) клеток иммунной системы, а именно лимфоцитов и макрофагов. Эти липидные медиаторы, получившие общее название эйкозаноиды (20С), представляют собой следующие группы веществ: просгландины PG, лейкотриены LT и тромбоксаны ТХ (рис.20).

 

Иммунитет – это способ защиты организма от тел и веществ, несущих признаки генетически чужеродной информации.

 

 

Рис.20. Метаболизм арахидоновой кислоты в упрощенном виде

Простагландин PGE2 (9), синтезируемый из арахидоновой кислоты при помощи фермента циклооксигеназы и лейкотриен LTB4 (10), синтез которого катализируется 5-липоксигеназой, принимает участие в воспалительных процессах; кроме того простагландин PGE2, синтезируемый макрофагами из арахидоновой кислоты, ингибирует пролиферацию Т4-хелперных лимфоцитов (Тх4), которые стимулируют пролиферацию клеток иммунной системы и активирует Т8-суппрессорные клетки (Тс8), которые, в свою очередь, также ингибируют пролиферацию Т4-хелперов как следствие, иммуномониторинг раковых клеток, осуществляемый в организме лимфоцитами, ослабляется (рис.21).

 

 

Рис.21. Макрофаги (МФ), лимфоциты, интерлейкины (ИЛ), лимфокины (ЛК), простагладин PGE 2 иммунный ответ.

 

По сравнению с пищей, содержащей большое количество насыщенных жирных кислот, диета, богатая ненасыщенными кислотами, способствует более длительной толерантности к опухолевым и кожным заболеваниям; ненасыщенные кислоты w6 ряда проявляют иммуносупрессорные свойства. В сердечно-сосудистой системе задействованы эйкозаноиды-антагонисты: тогда как тромбоксан ТХА2 является проагрегаторным и проявляет тромботические свойства, простациклин PGI2, синтезируемый эндотелиальными клетками, является антиагрегаторным. При аутоиммунных заболеваниях, таких как ревматоидный артрит, множественный склероз, диабет 1-го типа, клетки иммунной системы атакуют клетки их собственного организма, так как принимают их за чужеродные. Также как и противовоспалительные лекарства, действие которых основано на ингибировании синтеза простагландина PGE2 (кортикоиды, индометацин), жирные кислоты w3 ряда уменьшают синтез PGE2 и обладают благотворным действием.

В заключение, следует сказать, что полиеновые жирные кислоты, входящие в состав Спирулины, могут обладать высокой питательной ценностью при их недостатке в регулярной пище.

 







Дата добавления: 2015-08-17; просмотров: 667. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия