Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Маска подсети





Если маршрутизаторы в сети Internet используют только сетевой префикс адреса получателя для передачи трафика в организацию, то маршрутизаторы внутри частной сети организации используют расширенный сетевой префикс для передачи трафика индивидуальным подсетям. Расширенным сетевым префиксом называют префикс сети и номер подсети. Так что схему на рис.5.3 можно представить также следующим образом (рис. 5.5):

 

Рис. 5.5 Расширенный сетевой префикс

Понятие расширенного сетевого префикса, по сути, эквивалентно понятию маска подсети (subnet mask). Маска подсети — это двоичное число, содержащее единицы в тех разрядах, которые относятся к расширенному сетевому префиксу. Маска подсети позволяет разделить IP-адрес на две части: номер подсети и номер устройства в этой подсети.

Старшие биты IP-адреса используются рабочими станциями и маршрутизаторами для определения класса адреса. После того как класс определен, устройство может легко вычислить границу между битами, использующимися для идентификации номера сети, и битами номера устройства в этой сети. Однако для определения границ битов, идентифицирующих номер подсети, такая схема не подходит. Для этого как раз и используется 32-битная маска подсети, которая помогает однозначно определить требуемую границу. Для стандартных классов сетей маски имеют следующие значения:

255.0.0.0 — маска для сети класса А;

255.255.0.0 — маска для сети класса В;

255.255.255.0 — маска для сети класса С.

Например, если сетевой администратор хочет использовать весь третий октет для номера подсети в сети класса В 130.5.0.0, то ему необходимо указать маску подсети 255.255.255.0. Биты в маске подсети должны быть установлены в единицу, если система, проверяющая адрес, должна рассматривать соответствующий бит в IP-адресе как часть расширенного сетевого префикса. Другими словами, после определения класса IP-адреса, любой бит в номере устройства, который имеет соответствующий установленный бит в маске подсети, используется для идентификации номера подсети. Оставшаяся часть номера устройства, которой соответствуют нулевые биты в маске подсети, используется для задания номера устройства. На рис.5.6 показан пример IP-адреса класса В с соответствующей маской подсети.

 

В стандартах, описывающих современные протоколы маршрутизации, часто используется длина расширенного сетевого префикса, а не маска подсети. Эта длина показывает число установленных в единицу бит в маски подсети.

Так сетевой адрес 130.5.5.25 с маской подсети 255.255.255.0 может быть записан как 130.5.5.25 /24 (в маске подсети 255.255.255.0 число бит, установленных в единицу, равно 24).

Адрес   130.5.5.25  
Адрес в двоичном виде   10000010.   00000101.   00000101.    
Маска подсети   255.255.255.0  
Маска подсети в двоичном виде   11111111.   11111111. 11111111.    
Сетевой префикс   10000010. 00000101.    
Расширенный сетевой префикс   10000010.   00000101.   00000101.    
Или в более наглядном виде:  
        Сетевой префикс   Номер подсети   Номер устройства
IP-адрес   130.5.5.25     00000101.   00000101.    
Маска подсети   255.255.255.0   11111111.   11111111.   11111111.    
        Расширенный сетевой префикс        

 

Рис.5.6. IP-адрес класса В с соответствующей маской подсети

Такая запись является более компактной и легче воспринимается, чем маска подсети в ее традиционном точечно-десятичном формате. В табл.5.2 приведен пример использования расширенного сетевого префикса. В табл.5.3 устройство того же адреса представлено в несколько другом виде.

Таблица 5.2.

Пример записи с использованием расширенного сетевого префикса

    Сетевой префикс   Номер подсети   Номер устройства  
130.5.5.25 10000010. 00000101. 00000101.  
255.255.255.0 11111111. 11111111. 11111111.  
Эквивалентная запись  
    24-битовый расширенный сетевой префикс   Номер устройства  
130.5.5.25/24   10000010.   00000101.   00000101.    

 

Таблица5.3.

Структура адреса с расширенным сетевым префиксом

Адрес   130.5.5.25  
Адрес в двоичном виде   10000010.   00000101.   00000101.    
Маска подсети в десятичном виде   255.255.255.0  
Маска подсети в двоичном виде   11111111.   11111111.   11111111.    
Номер подсети       00000101.    
Номер устройства          
Адрес с расширенным сетевым префиксом   130.5.5.25/24  
Адрес с расширенным сетевым префиксом в двоичном виде   10000010. 00000101. 00000101.    

Однако следует учитывать, что большинство современных протоколов маршрутизации переносят маску подсети в своих сообщениях. В то же время, не существует стандартного протокола маршрутизации, который имел бы дополнительное однобайтовое поле в заголовке своих сообщений, содержащее запись о числе бит в расширенном сетевом префиксе. Каждый протокол маршрутизации передает полную 4-октетную маску подсети.

Для администратора сети чрезвычайно важно знать четкие ответы на следующие вопросы:

Сколько подсетей требуется организации сегодня?

Сколько подсетей может потребоваться организации в будущем?

Сколько устройств в наибольшей подсети организации сегодня?

Сколько устройств будет в самой большой подсети организации в будущем?

Первым шагом в процессе планирования является определение максимального количества требуемых подсетей. Данное число округляется вверх до ближайшей степени двойки. Затем важно учесть возможность увеличения числа подсетей. Наконец, проверяется достаточность адресов устройств в самой большой подсети организации на настоящий момент и в обозримом будущем.

Предположим, что организация получила сеть класса С 193.1.1.0 и ей необходимо сформировать шесть подсетей. Наибольшая подсеть должна поддерживать 25 устройств. На первом шаге определяется число бит, необходимых для выделения шести подсетей. Очевидно, необходимо выделить три бита (23=86). Так как организации выделены адреса класса С (префикс /24), то получаемый расширенный сетевой префикс равен /27 (24+3=27). Это соответствует маске подсети 255.255.255.224 (табл. 5.4).

Таблица5.4

Пример определения маски подсети в организации

    Сетевой префикс   Байт для задания номеров устройств в данной сети
    Байты для задания номера сети   Биты для номеров подсетей    
193.1.1.0 11000001. 00000001. 193.1.1.0 11000001. 00000001.
255.255.255.224     255.255.255.224 11111111.  
Эквивалентная запись
193.1.1.0/27 11000001.00000001.00000001.000  

В табл. 5.5 устройство адреса в этом примере рассматривается более подробно.

 

Таблица5.5

Маска подсети в организации

Адрес 193.1.1.0
Адрес в двоичном виде 11000001.   Адрес в двоичном виде 11000001.   Адрес в двоичном виде 11000001.  
Маска подсети   Маска подсети   Маска подсети  
Маска подсети в двоичном виде 11111111.   Маска подсети в двоичном виде 11111111.   Маска подсети в двоичном виде 11111111.  
Эквивалентная запись
Адрес с расширенным сетевым префиксом 193.1.1.0/27
Адрес с расширенным сетевым префиксом в двоичном виде 11000001.     Адрес с расширенным сетевым префиксом в двоичном виде 11000001.     Адрес с расширенным сетевым префиксом в двоичном виде 11000001.    

Номер подсети необязательно должен располагаться сразу после сетевого префикса. Администратор может устанавливать биты в маске подсети независимо от остальной части адреса. В примере с адресом 193.1.1.0 /27 третий байт маски подсети вместо 111000002 может быть, например, установлен в 000111002. Однако на практике в большинстве случаев так не поступают.

Используемый 27-битовый расширенный сетевой прификс оставляет 5 бит для задания номеров устройств в каждой из подсетей. Это означает, что в каждой подсети может быть использовано до 32 (25=32) устройств. Однако, так как адреса, у которых все биты равны нулю или единице, являются зарезервированными, общее число адресов устройств в каждой подсети равно 30 (32-2).

Для выделения подсети сетевой администратор помещает двоичное представление номера этой подсети (для восьми подсетей это может быть число от 0 до 7) в битовое поле номера подсети. Например, для определения подсети 4 администратор просто помещает двоичное представление числа 4 (1002) в трехбитовое поле номера подсети. Таблица 5.6 содержит все восемь возможных вариантов подсетей в рассматриваемом примере.

Самым простым способом проверить, что все подсети выделены правильно, является следующий. Убедитесь в том, что все десятичные номера подсетей кратны номеру подсети #1. В данном примере все номера подсетей кратны 32.

Таблица5.6

Возможные варианты подсетей

Сеть/адрес Точечно-десятичный формат Двоичный формат
Базовая сеть   193.1.1.0/24   11000001.00000001.00000001.00000000  
Подсеть #0   193.1.1.0/27   11000001.00000001.00000001. 000 00000
Подсеть #1   193.1.1.32/27   11000001.00000001.00000001. 001 00000  
Подсеть #2   193.1.1.64/27   11000001.00000001.00000001. 010 00000  
Подсеть #3   193.1.1.96/27   11000001.00000001.00000001. 011 00000  
Подсеть #4   193.1.1.128/27   11000001.00000001.00000001. 100 00000  
Подсеть #5   193.1.1.160/27   11000001.00000001.00000001. 101 00000  
Подсеть #6   193.1.1.192/27   11000001.00000001.00000001. 110 00000  
Подсеть #7   193.1.1.224/27   11000001.00000001.00000001. 111 00000  

Первоначально документ RFC 950 запрещал использование номеров подсетей, у которых все биты установлены в единицы или нули. Причиной такого ограничения являлось то, что некоторые протоколы маршрутизации не переносят в своих служебных сообщениях ни маски подсети, ни длины расширенного сетевого префикса. Например, при использовании протокола маршрутизации RIP версии 1 маршруты в разные подсети с адресами 193.1.1.0 /27 (00000) и 193.1.1.0 /24 (00000000) будут рассматриваться как идентичные. Аналогичная проблема возникает и в случае установки всех бит в единицу. Например, адрес 193.1.1.255 будет широковещательным адресом и для сети 193.1.1.0 /24 (номер устройства 11111111) и для сети 193.1.1.224 /27 (номер устройства 11111). В табл. 8.8 показаны обе рассмотренные ситуации.

С разработкой протоколов маршрутизации, переносящих в своих служебных сообщениях маску подсети (OSPF, IS-IS), стало возможным использование подсетей, все биты номеров которых установлены в единицу или ноль — вопреки документу RFC 950. В результате производители позволяют настраивать подсети с такими номерами на портах своих маршрутизаторов. При этом, однако, нужно учитывать два обстоятельства: используемые в корпоративной сети протоколы маршрутизации, относящиеся к классу IGP, должны поддерживать маску подсети или расширенный сетевой префикс. Кроме того, необходимо, чтобы маршрутизаторы в сети поддерживали номера подсетей со всеми единичными или нулевыми битами. При этом важно учитывать номер версии программного обеспечения маршрутизатора. Например, маршрутизатор NetBuilder II фирмы 3Com включает полную поддержку таких подсетей, начиная с версии 8.3.0.2.

Таблица5.7

Идентичные маршруты и широковещательные адреса

Маршруты в сети   193.1.1.0/24   11000001.00000001.00000001.(24-бито-вый расширенный сетевой префикс)  
    193.1.1.0/27   11000001.00000001.00000001.000 (27-би-товый расширенный сетевой префикс)  
Широковещательные адреса 193.1.1.0/24   11000001.00000001.00000001. (24-бито-вый расширенный сетевой префикс)  
    193.1.1.224/27   11000001.00000001.00000001.111 (27-битовый расширенный сетевой префикс)  

 

В рассмотренном примере остается 5 бит для задания адресов устройств в каждой подсети. В результате каждая подсеть может содержать блок из 30 адресов устройств (25-2). Устройства нумеруются от 1 до 30. Для определения адреса устройства # N в сети администратор помещает двоичное представление числа N в поле номера устройства. Например, для выделения адреса устройству #28 в подсети #2 администратор вставляет двоичное представление 28 (111002) в пятибитовое поле подсети #2. В табл. 5.8 показаны некоторые возможные номера устройств в подсети #2.

Таблица. 5.8

Адреса устройств в подсети #2

Сеть (устройство)/адрес   Точечно-десятичный формат   Двоичный формат  
Подсеть #2   193.1.1.64/27   11000001.00000001.00000001.010 00000  
Устройство #1   193.1.1.65/27   11000001.00000001.00000001.010 00001  
Устройство #2   193.1.1.66/27   11000001.00000001.00000001.010 00010  
Устройство #3 193.1.1.67/27   11000001.00000001.00000001.010 00011  
Устройство #28   193.1Л.92/27   11000001.00000001.00000001.010 11100  
Устройство #29   193.1.1.93/27   11000001.00000001.00000001.010 11101  
Устройство #30   193.1.1.93/27   11000001.00000001.00000001.010 11110  
Широковещательный адрес для подсети #2
    193.1.1.95   11000001.00000001.00000001.010 11111  

 

Для того чтобы проверить правильность широковещательного адреса для определенной подсети, можно использовать следующее простое правило. Во всех случаях широковещательный адрес для подсети #N на единицу меньше, чем базовый адрес для подсети #(N+1). Например, широковещательный адрес для подсети #2 (193.1.1.95) на единицу меньше базового адреса подсети #3 (193.1.1.96).

При введении подсетей значительно усложнился процесс определения принадлежности отправителя и получателя к одной сети.

Теперь перед отправкой дейтаграмм устройству необходимо определить:

располагается ли получатель в той же подсети, что и отправитель;

какой маршрутизатор необходимо использовать (в том случае, если существует несколько (более одного) маршрутизаторов, имеющих маршрут в нужную сеть).

До введения подсетей в поле сетевого номера IP-адрес получателя сравнивался отправителем с собственным сетевым номером. Если сетевые номера совпадали, то считалось, что устройства располагаются в одной локальной сети.

Однако после введения подсетей получатель может располагаться в другой подсети той же самой сети, что и получатель. В этом случае для проверки используется маска подсети. Над IP-адресом получателя и маской подсети выполняется операция логическое «И». Результат сравнивается с результатом выполнения этой же операции над собственным IP-адресом и той же маской подсети. Если результаты совпадают, то отправитель и получатель находятся в одной подсети и дейтаграмма может быть послана напрямую. Если результаты различны, то получатель находится в другой подсети. В этом случае дейтаграмма посылается маршрутизатору.

Документ RFC 1219 определяет основное правило, которому желательно следовать при присваивании номеров подсетям и устройствам. Номера подсетей назначают таким образом, чтобы старшие биты в номере подсети устанавливались первыми. Например, если поле номера подсети состоит из четырех бит, то первые несколько номеров подсетей должны быть следующими: 8 (10002), 4 (01002), 12 (11002), 2 (00102), 6 (01102) и т. д. Иными словами, единичные биты номеров подсетей рекомендуется устанавливать, начиная с крайней левой позиции. В то же время единичные биты номеров устройств рекомендуется устанавливать, начиная с крайней правой позиции (табл. 8.10). В нашем случае сетевой префикс состоит из двух октетов (в маске 11111111.11111111.), за ними (в адресе) следует 4 бита номера подсети и 12 бит остается под номер устройства.

Если следовать данному правилу, то на границе между номером подсети и номером устройства будут существовать нулевые неиспользуемые биты. Это позволяет изменять маску подсети без изменения IP-адреса, присвоенного устройству. Необходимость изменения маски подсети может возникнуть при увеличении числа устройств в каждой подсети. В этом случае можно «заимствовать» часть бит из числа зарезервированных под номера подсетей. Достоинством описанного правила является то, что администратору при изменении маски подсети на устройстве не надо менять IP-адрес устройства. Изменение адресов может потребовать больших усилий от администратора: перенастройки почтовых служб, модификации статических таблиц маршрутизации и т. д.

Таблица. 5.9

Рекомендуемая схема присвоения адресов

Номера подсетей Биты адреса Номера устройств
  1000 0000. 0000 0001    
  0100 0000. 0000 0010    
  1100 0000. 0000 0011    
  0010 0000. 0000 0100    
  1010 0000. 0000 0101    
  01100000. 0000 0110    
  1110 0000. 0000 0111    

В сети с подсетями можно использовать два вида широковещания: направленное и ограниченное. Направленное широковещание используется для передачи дейтаграммы всем устройствам определенной подсети. Для посылки дейтаграммы всем устройствам во всех подсетях необходимо использовать ограниченное широковещание с адресом 255.255.255.255. Необходимо, однако, учесть, что маршрутизаторы не пропускают дейтаграммы с таким адресом (поэтому такое широковещание и называется ограниченным). В средах с подсетями существует ограничение на направленное широковещание. Биты, используемые для формирования номеров подсетей и обычно (в традиционных сетях) являющиеся частью поля номера устройства, не могут быть установлены в нули или единицы. Например, пусть у нас есть адрес класса С, в котором третий байт выделен под номера подсетей: 128.1.Номер подсети. Номер устройства. В этом случае адрес направленного широковещания не может быть равен 128.1.255.255, 128.1.0.255, 128.1.255.0 или 128.1.0.0.

На рис. 5.7 показан пример сети с подсетями, связанными маршрутизаторами. Каждый из маршрутизаторов хранит маршруты во все подсети. Маска подсети равна 255.255.255.0. В табл.. 5.10 приводится список получателей широковещательных дейтаграмм, отправляемых рабочей станцией А.

Рис. 5.7 Пример широковещания в сети

Таблица. 5.10

Получатели широковещательных дейтаграмм от станции А

IP-адрес   Получатели
255.255.255.255   Станция Б и порт 1 (П1) маршрутизатора Ml
128.1.1.255   Станция Б и порт 1 Ml
128.1.2.255   Станции В и Г; порт 2 Ml и порт 1 М2
128.1.3.255   Станции Д и Е; порт 2 М2

 

Маска подсети переменной длины

В 1987 году вышел документ RFC 1009, определяющий использование разных масок подсетей в одной сети, состоящей из большого количества подсетей. Так как в этом случае расширенные сетевые префиксы в различных подсетях имеют разную длину, говорят о масках подсетей переменной длины. Маску подсети переменной длины поддерживают современные протоколы маршрутизации, такие как OSPF и IS-IS (см. ниже). Сообщения этих протоколов переносят как адрес подсети, так и соответствующую ему маску. Если протокол маршрутизации не позволяет использовать маску подсети, маршрутизатор будет либо предполагать, что должна использоваться маска подсети, присвоенная его локальному порту, либо выполнять поиск в статически настроенной таблице, содержащей всю информацию о масках подсетей. Первое решение не гарантирует правильности выбора маски подсети, а статическая таблица не имеет возможности масштабирования. Кроме того, ею сложно управлять и исправлять в ней ошибки также непросто.

Таким образом, если требуется использование маски подсети переменной длины в сложной сетевой топологии, то наилучшим выбором является применение протоколов маршрутизации OSPF, IS-IS, а не RIP-1 IP. Однако при этом нужно учитывать, что вторая версия протокола RIP (RIP-2 IP), описанная в документе RFC 1388, расширяет возможности первой версии протокола, в том числе и добавлением возможности переноса маски подсети.

Так как протокол RIP-1 не переносит информацию о масках подсетей в своих сообщениях об обновлении маршрутизации, то сохраняются маски подсетей, используемые с каждым номером сети. При отсутствии данной информации протокол маршрутизации RIP-1 IP выбирает маску подсети, которая соответствует каждому маршруту в его таблице маршрутизации.

Рассмотрим пример сети, на входе которой стоит маршрутизатор. Порту 1 этого маршрутизатора присвоен адрес 130.24.13.1 с маской 255.255.255.0 (расширенный сетевой префикс /24), а порту 2 — адрес 200.14.13.2 с такой же маской подсети. Анализируя первые биты адреса порта 1 и маску подсети, маршрутизатор определит, что это адрес класса В, поэтому третий байт адреса используется для задания номера подсети. Порту 2 присвоен адрес класса С без выделения подсетей.

Если маршрутизатор получает информацию о маршруте к сети 130.24.36.0 от своего соседа через порт 1, он будет использовать маску подсети 255.255.255.0 (расширенный сетевой префикс /24), так как порту 1 присвоен адрес с тем же номером сети 130.24.0.0. Маска подсети просто наследуется. Но если маршрутизатор получит от соседа информацию о маршруте к сети 131.25.0.0, он будет использовать стандартную маску подсети 255.255.0.0, так как адрес 131.25.0.0 является адресом класса В, а этому классу соответствует маска подсети 255.255.0.0. Будет использоваться именно эта маска, так как маршрутизатор не имеет другой информации о маске подсети.

Маршрутизатор, поддерживающий протокол RIP-1 IP, включает биты, определяющие номера подсетей в сообщения об обновлении маршрутов, только в том случае, если порт, через который предполагается посылать сообщения, настроен на подсеть с тем же номером сети. Если порт настроен с другим сетевым номером, маршрутизатор будет рассылать только сетевую часть адреса.

Теперь предположим, что входной маршрутизатор получил информацию от соседа о маршруте к сети 130.24.36.0. Так как порт 1 настроен на адрес того же класса, то маршрутизатор предположит, что сеть 130.24.36.0 имеет маску 255.255.255.0. Поэтому, когда наступает время оповестить о данном маршруте, он будет информировать о маршруте к сети с адресом 130.24.36.0 через свой порт 1 и о маршруте к сети 130.24.0.0 через порт 2. Во втором случае оказывается утраченной информация, содержащаяся в третьем байте адреса (36).

Протокол RIP-1 IP может использовать только одну маску подсети для данного номера сети. Возможность присваивания одному адресу нескольких масок подсетей предоставляет несколько преимуществ. Множество масок подсетей позволяет более эффективно использовать выделенное организации адресное пространство. Кроме того, удается объединять маршруты, что значительно уменьшает количество маршрутной информации внутри домена маршрутизации.

О нескольких масках подсетей, присвоенных одному адресу, часто говорят как о маске подсети переменной длины (Variable Length Subnet Mask, VLSM). Основной проблемой этого метода является совместимость с предыдущими версиями протоколов, которые использовали только одну маску подсети.

Пусть администратор сети организации хочет настроить сеть класса В 130.5.0.0 на расширенный сетевой префикс /22 (табл.. 5.11). Для задания номеров подсетей могут использоваться 6 бит.

Таблица 5.11

Сеть класса В 130.5.0.0 при расширенном сетевом префиксе /22

Адрес сетис расширенным сетевым префиксом 130.5.0.0/22  
Сетевой префикс (класс В)   10000010.   00000101.      
Биты для номеров подсетей          
Биты для номеров устройств         00.00000000  

В этой сети с расширенным сетевым префиксом /22 будут доступны 64 подсети (26=64), каждая из которых поддерживает максимум до 1022 (210-2=1022) адресов устройств. Такой вариант устроит администратора, если организации нужно небольшое число подсетей с большим количеством устройств в них. Однако, допустим, организации нужны подсети с числом устройств, не превышающим 30. При использовании фиксированной маски подсети администратору придется создавать подсети, рассчитанные на значительно большее чем 30 количество устройств (а именно, 1022). В результате невостребованными оказываются около 1000 адресов устройств в подсетях. Как видно из этого примера, ограничения, вызываемые необходимостью применять единую маску подсети, значительно уменьшают эффективность использования всего адресного пространства, выделенного организации.

Использование маски подсети переменной длины дает возможность легко преодолеть эти трудности. Действительно, предположим, что администратор хочет использовать расширенный сетевой префикс /26. Сеть класса В с таким расширенным сетевым префиксом позволяет поддерживать до 1024 подсетей (210), каждая из которых может содержать до 62 (26-2) индивидуальных адресов устройств (табл. 5.12). Такой расширенный сетевой префикс идеально подходит к небольшим подсетям с числом устройств порядка 60.

Таблица5.11

Распределение адресного пространства при префиксе /26

Адрес сети с расширенным сетевым префиксом   130.5.0.0/26  
Сетевой префикс (класс В) 10000010.   00000101.          
Биты для номеров подсетей         00000000.00      
Биты для номеров устройств              

 

Как видно, применение различных расширенных сетевых префиксов (/22 и /26) позволило получить две разные подсети, отличающиеся по числу поддерживаемых устройств. Маска подсети переменной длины позволяет администратору выделять подсети с необходимыми характеристиками. При этом созданные подсети можно со временем легко изменять. Общая схема такова: сначала сеть делится на подсети, затем некоторые из этих подсетей делятся на более мелкие подсети и т. д. То есть происходит рекурсия (дробление) подсетей.

Рассмотрим другой пример. На рис.5.8 показано, как сеть класса А с адресом 10.0.0.0 сначала разделяется на подсети с расширенным сетевым префиксом /16 (маска подсети 255.255.0.0). Получается 254 подсети. В каждой подсети поддерживается до 65 534 (216-2) индивидуальных адресов устройств. Полученная подсеть с адресом 10.253.0.0 с расширенным сетевым префиксом /24 поддерживает 254 подсети, каждая из которых включает до 254 (28-2) устройств. При дальнейшей рекурсии с расширенным сетевым префиксом /27 подсеть с адресом 10.253.1.0 будет включать 6 подсетей с номерами, кратными 32, содержащих до 30 (25-2) устройств.

Рис. 5.8 Иерархия адресов подсетей

Таким образом, иерархическое (рекурсивное) разбиение адресного пространства позволяет гибко настроить сеть организации. Кроме того, внедрение маски подсети переменной длины позволяет значительно уменьшить объемы таблиц маршрутизации.

Дело в том, что каждый маршрутизатор теперь может включить информацию о всех своих подсетях в одну запись сообщения об обновлении. Так как структура подсетей не имеет значения для внешних сетей, маршрутизатор Mlоповещает маршрутизаторы в сети Internet только о маршруте с адресом 10.0.0.0 (рис.5.9).

 

Рис. 5.9 Объединение подсетей в одну запись

Естественно, даже при использовании маски подсети переменной длины администратору следует убедиться, что класс сети организации достаточен для выделения требуемого количества подсетей.

Рассмотрим сеть организации, которая охватывает несколько удаленных филиалов. Если организация имеет три удаленных сети, то ей потребуется выделить 3 бита для формирования подсетей (23=83). Этих 3 бит хватит и в обозримом будущем. Предположим, что администратор хочет сформировать отдельные подсети внутри каждого филиала — второй уровень в иерархии подсетей. Внутри этих подсетей необходимо выделить отдельные рабочие группы и их подсети. Следуя приведенной выше модели, мы видим, что верхний уровень иерархии определяется числом удаленных филиалов, второй — числом зданий внутри филиалов, а третий — максимальным числом подсетей в каждом здании и максимальным числом устройств в каждой из подсетей.

Для поддержки маски подсети переменной длины требуется выполнение трех основных условий:

Протокол маршрутизации должен переносить информацию о расширенном сетевом префиксе;

Все маршрутизаторы должны поддерживать алгоритм передачи, основы­вающийся на технологии наибольшего совпадения (longest match);

Адреса должны присваиваться в соответствии с существующей топологией сети.

Правило наибольшего совпадения основывается на том факте, что маршрут в таблице маршрутизации с большим расширенным сетевым префиксом определяет меньший набор получателей, чем тот же маршрут с коротким расширенным сетевым префиксом. Поэтому маршрутизатор должен выбирать маршрут с наибольшим расширенным сетевым префиксом (как наиболее точно определяющий получателей) при передаче трафика. В этом и состоит правило наибольшего совпадения.

Например, если адрес получателя равен 11.1.2.5 и в таблице маршрутизации есть три маршрута к этой сети (табл. 5.12), маршрутизатор выберет маршрут #1, так как его расширенный сетевой префикс совпадает с адресом получателя в большем числе бит.

Таблица. 5.12

Выбор маршрута с наибольшим совпадением

Получатель   11.1.2.5   00001011.00000001.00000010.00000101  
Маршрут #1   11.1.2.0/24   00001011.00000001.00000010.00000000  
Маршрут #2   11.1.0.0/16   00001011.00000001.00000000.00000000  
Маршрут #3   11.0.0.0/8   00001011.00000000.00000000.00000000  

 

Здесь необходимо сделать одно важное замечание. Адрес получателя (11.1.2.5) совпадает с тремя маршрутами. Согласно правилу наибольшего совпадения будет выбран маршрут к подсети 11.1.2.0 /24. Но может оказаться так, что устройство с адресом 11.1.2.5 не будет входить в подсеть 11.1.2.0. Тогда маршрутизатор не сможет передать трафик этому устройству. Поэтому назначение адресов следует обязательно проводить исходя из существующей сетевой топологии и при этом непременно учитывать правило наибольшего совпадения.

Иерархическая маршрутизация (реализованная в протоколе OSPF) требует, чтобы адреса устройств отражали действительную сетевую топологию на всех уровнях. Только при этом условии несколько подсетей можно объединить в одном сообщении о маршруте. Этот постулат является основополагающим при рассмотрении технологии бесклассовой маршрутизации (CIDR).

IP-таблица маршрутов

Как модуль IP узнает, какой именно сетевой интерфейс нужно использовать для отправления IP-пакета? Модуль IP осуществляет поиск в таблице маршрутов. Ключом поиска служит номер IP-сети, выделенный из IP-адреса места назначения IP-пакета.

Таблица маршрутов содержит по одной строке для каждого маршрута.

Основными столбцами таблицы маршрутов являются номер сети, флаг прямой или косвенной маршрутизации, IP-адрес шлюза и номер сетевого интерфейса.

Эта таблица используется модулем IP при обработке каждого отправляемого IP-пакета.

В большинстве систем таблица маршрутов может быть изменена с помощью команды "route". Содержание таблицы маршрутов определяется менеджером сети, поскольку менеджер сети присваивает машинам IP-адреса.







Дата добавления: 2015-08-27; просмотров: 2645. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия