Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод ветвей и границ. Общая схема





 

Метод ветвей и границ представляет собой комбинаторный метод, т.е. упорядоченный перебор вариантов и рассмотрение лишь тех из них, которые по некоторым признакам оказываются перспективными. Он имеет достаточно широкую сферу применения, поэтому рассмотрим его общую схему.

Пусть существует некоторая функция f(X), экстремум которой (например, максимум) необходимо найти при некоторой системе ограничений.

Этой системой определяется ОДП задачи - обозначим ее G. Пусть некоторым способом мы можем определить верхнюю границу функции на этой области 0, т.е. 0 f(X), X G.

Затем проверяют, не существует ли какой-нибудь очевидный способ нахождения точки X0, для которой f(X0)= 0. Если он есть, то искомый максимум найден.

Если такого способа нет, то множество G разбивают на подмножества G1 и G2 и для каждого из них находят верхнюю границу 1 и 2 (при этом 0 1 и 0 2). Далее оптимальный план ищут в наиболее перспективном множестве, т.е. в том, которому соответствует наибольшая оценка.

 
 

 

 


Этот процесс может быть изображен в виде дерева (рис.18). На каждом шаге процесса делается попытка найти точку Х в соответствующем подмножестве, на которой реализуется его верхняя граница. Если попытка не удается, то ветвление продолжают, рассматривая каждый раз наиболее перспективное подмножество (для его выбора сравнивают оценки вершин дерева, из которых нет выходов).

Если попытка найти Х: f(X) = k удалась, то это будет оптимальный план для всего исходного множества G (поскольку для остальных подмножеств верхние границы заведомо меньше).

При решении задачи на минимум схема та же, но рассматриваются вершины с наименьшей оценкой.

Этот метод всегда сходится, если мы имеем дело с ограниченной дискретной областью.

Чтобы конкретизировать метод ветвей и границ, необходимо установить:

1) алгоритм поиска границ ;

2) алгоритм разбиения множества на части;

3) алгоритм поиска Х, реализующего границу ;

4) сходимость метода.








Дата добавления: 2015-08-27; просмотров: 483. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия