Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод Пикара.





Напомним известные теоремы Пикара и Пеано о существовании и единственности решения данной задачи (задачи Коши).

Теорема ПЕАНО утверждает, что решение задачи Коши существует в некоторой окрестности точки Хо, если функция f(x,Y) непрерывна в окрестности точки (X0,Y0).

Теорема ПИКАРА гласит, что если не только функция f(x,Y), но и ее частная производная f'у(x,Y) также непрерывна в окрестности точки (Х00), то решение задачи Коши единственно на некотором отрезке, содержащем точку Х0.

Доказательство теоремы Пикара следует из общего принципа сжимающих отображений, оно весьма непросто, но обладает существенным преимуществом -оно конструктивно. Причем последовательность функций Yn(x), которая строится в нем, сходится к решению равномерно на отрезке со скоростью геометрической прогрессии. В методе Пикара последовательность функций Yn(x) строится по рекуррентной формуле:

при n= 0,1,2,...,

а за нулевое приближение берется константа Y0: Y0 (х)ºY0.

Для того, чтобы стало понятно происхождение этой рекуррентной формулы, заметим, что интегральное уравнение

эквивалентно исходной задаче Коши, поскольку любая функция Y(х), являющаяся его решением, удовлетворяет начальному условию Y(Хо)=Yо и уравнению Y'(х)=f(x,Y(х)) и наоборот.

Вопрос: Почему это действительно так?

Пример 4.1 Применим метод Пикара для решения уравнения Y'=Y с начальным условием Y(0)=1. Такая задача эквивалентна поиску решения интегрального уравнения Y=1+òY(t)dt.

В качестве начального приближения берем функцию Yо=1.

Тогда Y1=1+òYо(t)dt= 1+òdt= 1+x.

Далее, Y2= 1+òY1(t)dt= 1+ò(1+t)dt= 1+x+x2/2.

Y3= 1+òY2(t)dt= 1+ò(1+t+t2/2)dt= 1+x+x2/2+x3/6.

Можно убедиться, что Yn= 1+х+x2/2+... +xn/n!.

Упражнение 4.1.Доказать последнее равенство строго, используя принцип математической индукции.

Упражнение 4.2.В примере 4.1 найти точное решение Y(Х) и оценить скорость равномерной сходимости Yn(x) -> Y(Х) на отрезке [0,1].

В целом, приближенные методы решения обыкновенных дифференциальных уравнений можно разбить на 3 типа:

· аналитические, позволяющие получить приближенное решение Y(х) в виде формулы,

· графические, дающие возможность приближенного построения графика решения Y(х),т.е. интегральной кривой,

· численные, в результате применения которых получается таблица приближенных значений функции Y(х),

хотя такое деление и несколько условно.

Кроме метода Пикара, к аналитическим методам относится и

метод разложения неизвестной функции Y(х) в ряд,

на котором мы сейчас остановимся.

Напишем формальное разложение Y(Х) в ряд Тейлора в точке а:

В это равенство входят производные неизвестной функции Y(Х) в точке а, однако именно в этой точке, пользуясь условиями задачи, мы можем последовательно найти любое число производных и получить необходимое приближение решения. В общем виде это выглядит так: Yо(а)=Y(а)= Yо; Y'(а)=f(a,Y(a))= f(a,Yo)

Дифференцируя данное нам уравнение по Х,получим

Y''(Х)=f'х(x,Y(х))+f'у(x,Y(х))*Y'(х), откуда Y''(а)= f'х(а,Yо)+f'у(a,Yо)*f(a,Yо).

Аналогично получается и значения третьей и дальнейших производных в точке а -дифференцируем нужное число раз исходное уравнение и подставляем полученные ранее значения производных в точке а.

Пример 4.2.Выпишем первые члены разложения в ряд функции Y(x), удовлетворяющей уравнению Y'=2хY и начальному условию Y(0)=1.

Ясно, что Y(0)=1 и Y’(0)=2*0*1= 0. Далее, Y''(х)=2Y+2х*Y'(х), откуда Y''(0)=2.

Y'''(х)=2 Y'(х)+2 Y'(х)+2х*Y''(х)= 4Y'(х)+2хY''(х), откуда Y'''(0)=0.

Y(4)(х)=4Y''(х)+2хY'''(х), откуда Y(4)(0)=6.

Получаем приближенное решение Y(х)»1+х2+0.5х4.

Упражнение 4.3.Пользуясь формулой Лейбница для нахождения n-ой производной произведения функций, написать разложение искомой в примере 4.2 функции в ряд Тейлора.

Упражнение 4.4.Найти точное решение в примере 4.2 и оценить качество приближения в примере 4.2 на отрезке [-0.5,0.5].

Описанные выше методы не часто применяются на практике, поскольку в методе Пикара на каждом шаге приходится вычислять интеграл, что осложняет вычисления и ухудшает точность, а в методе разложения в ряд крайне сложно формализовать на любом из языков процесс нахождения производных высокого порядка, а при малом количестве членов разложения этот метод дает хорошее приближение лишь вблизи от точки а.

Среди ГРАФИЧЕСКИХ рассмотрим







Дата добавления: 2015-08-27; просмотров: 4419. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия