Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Постановка задачи и ее качественное исследование.





Рассмотрим систему m линейных уравнений с n переменными:

(7.1)

Систему (7.1) можно записать короче в виде одного матричного уравнения AX=B,

где Х -столбец длины n, B -столбец длины m, А -матрица размерами mхn.

TEOРЕМА 1. Если ранг матрицы А совпадает с рангом расширенной матрицы (А|B), то в этом случае существует решение системы (7.1) и наоборот.

ТЕОРЕМА 2. В случае, когда количество уравнений совпадает с числом неизвестных и определитель A отличен от 0, существует единственное решение системы(7.1).

m=n и det(А)<>0 => решение (7.1) существует и единственно.

Если n>m, то решений (7.1) обычно бесконечное множество (линейное пространство размерности n-rang(A)). Если m>n, то обычно решений нет.

Упражнение 7.1. Приведите пример несовместной системы, у которой m<n.

Упражнение 7.2. Приведите пример совместной системы, у которой m>n.

Далее мы ограничимся рассмотрением частного случая: m=n и det(А)<>0, т.е. случай, когда решение существует и единственно, хотя метод Гаусса, например, носит универсальный характер.

Методы решения систем линейных уравнений можно разбить на две группы: точные методы и приближенные. К точным (прямым) относятся методы, позволяющие за конечное число шагов получить точное решение системы, (т.е. те методы, погрешность которых равна 0). К итерационным относятся методы, при которых строится рекуррентная последовательность векторов, сходящихся к решению. Обычно они применяются, когда применение точных методов затруднено или невозможно, например когда порядок системы – тысячи переменных.

К прямым методам относятся, кроме метода Гаусса, метод квадратного корня для симметричных матриц (или компакт-метод для произвольных), метод Крамера. Последний метод обычно изучается в теории систем линейных уравнений в виду возможности кратко записать решение системы. Пусть D-определитель квадратной матрицы А системы линейных уравнений: D=det(A)¹0. Пусть D(i)-определитель матрицы, у которой на i-ом месте находится столбец В, а остальные столбцы совпадают с соответствующими столбцами матрицы А. Тогда координаты вектора решения находятся по формулам: Х(i)=D(i)/D.

Упражнение 7.3. Определите по формулам Крамера решение системы и проверьте его:







Дата добавления: 2015-08-27; просмотров: 516. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия