Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Численные методы решения экстремальных задач





Постановка задачи.

Пусть -функция, определенная на некотором множестве . Будем рассматривать задачу минимизации функции . Любая задача максимизации функции на равносильна задаче минимизации функции на том же множестве . Поэтому можно ограничиться лишь изучением задач минимизации.

Классический подход.

Пусть кусочно-непрерывная и кусочно-гладкая функция на отрезке [a, b] ([a, b]ÎX). Это значит, что на [a, b] может существовать лишь конечное число точек, в которых функция либо терпит разрыв первого рода, либо непрерывна, но не имеет производной. Тогда точками экстремума функции на [a, b] могут быть лишь те точки, в которых выполняется одно из следующих условий: 1) терпит разрыв; 2) непрерывна, но производная не существует; 3)производная существует и равна нулю; 4) или . Такие точки принято называть точками подозрительными на экстремум. Поиск точек экстремума функции начинают с нахождения всех точек, подозрительных на экстремум. После того, как такие точки найдены, проводят дополнительное исследование и отбирают среди них те, которые являются точками локального минимума (максимума).

Упражнение 1. Запишите достаточное условие того, что подозрительная точка x* Î [a, b] является точкой локального минимума (максимума).

Чтобы найти глобальный минимум (максимум) функции на [a, b], нужно перебрать все точки локального минимума (максимума) на [a, b] и среди них выбрать точку с наименьшим (наибольшим) значением функции, если таковая существует (если вместо [a, b] имеем дело с R, то следует изучить поведение функции при или ).

К сожалению, классический метод имеет весьма ограниченное применение. В практических задачах вычисление зачастую является непростым делом. Например, значения функции определяется из наблюдений или эксперимента, и получить информацию о её производной крайне трудно. Поэтому важно иметь также и другие методы поиска экстремума, не требующие вычисления производной, удобные для реализации на ЭВМ.

Упражнение 2. Найти точки экстремума функции = sin3(x) + cos3(x) на отрезках [0, 3p/4], [0, 2p].

Упражнение 3. Пусть = (1 + e1/x )-1 при x¹0, f(0)=0. Найти точки экстремума этой на отрезках [-1, 0], [-1, 1], [1, 2] и на R.

Поиск экстремумов функций одной переменной является самостоятельной и часто встречаемой задачей. Кроме того, к нему сводится более сложная задача поиска экстремумов функций множества переменных.







Дата добавления: 2015-08-27; просмотров: 646. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия