Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Средняя арифметическая и ее свойства





- средняя арифметическая является центром распределения, вокруг которого группируются все варианты статистической совокупности.

.

Если рассматривается интервальный вариационный ряд, то средняя арифметическая, называемая взвешенной, вычисляется по формуле

, где - частота - ого класса, , - количество классовых интервалов. Рассмотрим свойства средней арифметической.

Свойство 1. Если каждую варианту совокупности уменьшить или увеличить на какое-то произвольное положительное число А, то и средняя арифметическая уменьшится или увеличится на столько же.

Упражнение 1. Доказать свойство 1.

Свойство 2. Если каждую варианту разделить или умножить на одно и тоже число А, то и средняя арифметическая изменится во столько же раз.

Упражнение 2. Доказать свойство 2.

Свойство 3. Сумма произведений отклонений вариант от их средней арифметической на соответствующие им частоты равна нулю.

Упражнение 3. Доказать свойство 3.

Свойство 4. Сумма квадратов отклонений вариант от их средней арифметической меньше суммы квадратов отклонений тех же вариант от любой другой величины А, не равной средней арифметической.

Упражнение 4. Доказать свойство 4.

Размах вариации характеризует варьирование признака в совокупности.

Рассмотрим еще две характеристики выборочной совокупности: дисперсию и среднее квадратическое отклонение. Эти величины характеризуют не только величину, но и специфику варьирования признака.







Дата добавления: 2015-08-27; просмотров: 494. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия