Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Законы распределения случайных величин





Между отдельными значениями варьирующих признаков и частотой их встречаемости в генеральной совокупности существует определенная связь (это наглядно можно увидеть на графике зависимости частот от значения вариат).

Реализация того или иного эначения варьирующего признака представляет собой случайное событие. Предсказать появление случайного события в отдельных испытаниях (наблюдениях) можно лишь с некоторой уверенностью, или вероятностью, которое имеет данное событие. Случайной называется переменная величина, способная в одних и тех же условиях испытания принимать различные числовые значения. Функция , связывающая значения вариант с вероятностями называется законом распределения случайной величины.

В природе широко распространена закономерность: в массе относительно однородных членов, составляющих статистическую совокупность, большинство их оказывается среднего или близкого к нему размера, и чем дальше они отстоят от среднего уровня варьирующего признака, тем реже встречаются в данной совокупности. Такое поведение может описано законом нормального распределения (формула Гаусса-Лапласа)

, где - дисперсия генеральной совокупности, - генеральная средняя арифметическая или математическое ожидание.

Величина получила название нормированного отклонения.

Выборочные характеристики рассматриваются как приближенные значения или точечные оценки соответствующих генеральных параметров, которые, как правило, остаются неизвестными. Средняя арифметическая выборки служит оценкой средней арифметической генеральной совокупности , выборочная дисперсия является оценкой генеральной дисперсии , - в качестве точечной оценки стандартного отклонения генеральной совокупности.

Формально математическое ожидание соответствует средней арифметической эмпирических распределений. Однако отождествлять эти величины нельзя. Средняя арифметическая выражается отношением суммы всех членов ряда к их общему числу, а математическое ожидание представляет сумму произведений членов ряда на их вероятности. Эмпирическая средняя стремится к своей вероятной величине, то есть, к математическому ожиданию по мере увеличения числа испытаний: чем больше число испытаний, тем ближе эмпирическая средняя к математическому ожиданию.







Дата добавления: 2015-08-27; просмотров: 419. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия