Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Средние величины и показатели вариации. Вариационные ряды и их графики дают наглядное представление о том, как варьирует тот или иной количественный признак





Вариационные ряды и их графики дают наглядное представление о том, как варьирует тот или иной количественный признак. Но они недостаточны для полной характеристики статистической совокупности. Количественные показатели, которые (логически и теоретически обоснованы) позволяют судить о качественном своеобразии варьирующих объектов и сравнивать их между собой, называются статистическими характеристиками.

В отличие от индивидуальных числовых характеристик средние величины обладают большей устойчивостью, способностью характеризовать группу однородных вариант одним (средним) значением. И хотя средние абстрагируют нас от конкретных вещей, они вполне понятны и ощутимы. Средний рост, средняя масса …(то есть, здесь уравновешиваются все индивидуальные отклонения и появляется качественное своеобразие группового объекта).

По определению Гаусса, истинной средней служит такая величина, сумма квадратов отклонений от которой обладает нименьшим значением.

, где - средняя величина, - варианта, - объем выборки, - величина, определяющая вид средней.

Средние величины могут характеризовать только однородную массу вариант (если это не так, следует сгруппировать варианты в отдельные качественно однородные группы и вычислять групповые средние).

- средняя гармоническая. В этом случае . В некоторых случаях для усреднения количественных признаков используется такой тип средней.

- средняя квадратическая. При выражении количественных признаков вариант мерами площади более точной усредненной характеристикой будет средняя квадратическая .

- средняя кубическая. Более точная средняя характеристика, в тех случаях, когда варьирующий признак выражен в объмных единицах.

.

Средняя геометрическая является более точной характеристикой при определении средних прибавок или при увеличении линейных размеров тел, прироста численности популяции за определенный промежуток времени.

.

- средняя арифметическая. Эту величину рассотрим подробнее.







Дата добавления: 2015-08-27; просмотров: 625. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия