Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Описание симплекс-метода.





Выразим целевую функцию через свободные переменные и допишем к задаче:

f = a0 -ar+1хr+1 -... -anхn.

Для базисного решения получим f =a0.

Перед нами стоит цель: уменьшить значение функции f за счет изменения свободных переменных. Свободные переменные для базисного решения равны 0, следовательно, мы можем их только увеличивать. Попробуем увеличивать хj, где r+1 £j £ n. Можем ли мы за счет увеличения этой свободной переменной уменьшить значение целевой функции? Если aj, положительное, то f уменьшается, а если aj отрицательное или 0, то нет. Т.е. если aj отрицательное, то нет смысла увеличивать хj, и наоборот.

Итак, если все aj отрицательны, то данное базисное решение является оптимальным, а минимум целевой функции f равен a0.

Как перейти от одного базисного решения к другому, более хорошему? Пусть есть такое j, что aj >0. При этом можно улучшить целевую функцию за счет увеличения хj. Все остальные свободные переменные оставляем равными 0. Тогда имеем:

Посмотрим, до какой степени можно увеличивать хj. Для этого надо определить, что происходит при этом с базисными переменными. Если коэффициент аij не положителен, то значение xi при увеличении xj тоже растет и это не препятствует неограниченному росту xj.

Если получилось, что в выбранном столбце все aij<=0, то задача поставлена некорректно, а оптимального решения не существует, поскольку можно бесконечно увеличивать х(j) и вместе с ним бесконечно уменьшать значение целевой функции, а решение все время будет оставаться допустимым.

Пусть среди аij есть положительные числа. Тогда при возрастании хj будут уменьшаться соответствующие базисные переменные xi. При этом увеличивать хj можно до тех пор, пока первая из переменных х1, х2...,хr обратится в 0. Это произойдет, когда хj примет значение минимальной из величин bii,j, у которых aij>0. После этого значение переменной хj станет отлично от 0,а какая-то из переменных хi обратится в 0. Это означает, что на очередном шаге мы переменную хj переводим в базисные, а хi - в свободные.

Алгоритм симплекс-метода:

1. Заполняем исходную таблицу (считается, что исходный базис найден).

2. Ищем в нижней строке максимальный положительный элемент (кроме a0). Если таких нет, то задача решена. Пусть aj - максимальное положительное число в нижней строчке.

3. В j-том столбце ищем положительные коэффициенты аkj (если таких нет, то задача не имеет решения). Во вспомогательный столбец заносим bkkj. Пусть минимальный элемент во вспомогательном столбце находится в i-й строке. На пересечении разрешающего столбца (j) и разрешающей строки (i) находится разрешающий элемент aij.

4. Заполняем новую таблицу в следующем порядке:

a) заголовок;

b) первый столбец (вместо хi пишем хj);

c) единичные столбцы;

d) разрешающую строку (делим на аij);

e) остальные строчки по порядку.

5. Возвращаемся к пункту 2.

 

 
 

ОСНОВНАЯ ФОРМУЛА симплекс-преобразования: (пункт 4e) имеет вид:







Дата добавления: 2015-08-27; просмотров: 416. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия