Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Описание симплекс-метода.





Выразим целевую функцию через свободные переменные и допишем к задаче:

f = a0 -ar+1хr+1 -... -anхn.

Для базисного решения получим f =a0.

Перед нами стоит цель: уменьшить значение функции f за счет изменения свободных переменных. Свободные переменные для базисного решения равны 0, следовательно, мы можем их только увеличивать. Попробуем увеличивать хj, где r+1 £j £ n. Можем ли мы за счет увеличения этой свободной переменной уменьшить значение целевой функции? Если aj, положительное, то f уменьшается, а если aj отрицательное или 0, то нет. Т.е. если aj отрицательное, то нет смысла увеличивать хj, и наоборот.

Итак, если все aj отрицательны, то данное базисное решение является оптимальным, а минимум целевой функции f равен a0.

Как перейти от одного базисного решения к другому, более хорошему? Пусть есть такое j, что aj >0. При этом можно улучшить целевую функцию за счет увеличения хj. Все остальные свободные переменные оставляем равными 0. Тогда имеем:

Посмотрим, до какой степени можно увеличивать хj. Для этого надо определить, что происходит при этом с базисными переменными. Если коэффициент аij не положителен, то значение xi при увеличении xj тоже растет и это не препятствует неограниченному росту xj.

Если получилось, что в выбранном столбце все aij<=0, то задача поставлена некорректно, а оптимального решения не существует, поскольку можно бесконечно увеличивать х(j) и вместе с ним бесконечно уменьшать значение целевой функции, а решение все время будет оставаться допустимым.

Пусть среди аij есть положительные числа. Тогда при возрастании хj будут уменьшаться соответствующие базисные переменные xi. При этом увеличивать хj можно до тех пор, пока первая из переменных х1, х2...,хr обратится в 0. Это произойдет, когда хj примет значение минимальной из величин bii,j, у которых aij>0. После этого значение переменной хj станет отлично от 0,а какая-то из переменных хi обратится в 0. Это означает, что на очередном шаге мы переменную хj переводим в базисные, а хi - в свободные.

Алгоритм симплекс-метода:

1. Заполняем исходную таблицу (считается, что исходный базис найден).

2. Ищем в нижней строке максимальный положительный элемент (кроме a0). Если таких нет, то задача решена. Пусть aj - максимальное положительное число в нижней строчке.

3. В j-том столбце ищем положительные коэффициенты аkj (если таких нет, то задача не имеет решения). Во вспомогательный столбец заносим bkkj. Пусть минимальный элемент во вспомогательном столбце находится в i-й строке. На пересечении разрешающего столбца (j) и разрешающей строки (i) находится разрешающий элемент aij.

4. Заполняем новую таблицу в следующем порядке:

a) заголовок;

b) первый столбец (вместо хi пишем хj);

c) единичные столбцы;

d) разрешающую строку (делим на аij);

e) остальные строчки по порядку.

5. Возвращаемся к пункту 2.

 

 
 

ОСНОВНАЯ ФОРМУЛА симплекс-преобразования: (пункт 4e) имеет вид:







Дата добавления: 2015-08-27; просмотров: 416. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия