Механизм разрушения различных теплозащитных материалов.
Принцип работы разрушающихся теплозащитных систем характеризуется потерей поверхностного слоя или разложением одной из компонент материала ради сохранения благоприятного теплового режима внутренних слоев и самой защищаемой конструкции. Разрушение поверхностного слоя происходит в результате различных физико-химических превращений под воздействием подводимых к поверхности конвективных и радиационных тепловых потоков, диффузионных потоков химически активных компонент, а также под действием сил давления и трения. Химические реакции могут протекать как при участии компонент набегающего потока, так и независимо от них. Кроме того, на поверхности теплозащитного покрытия под действием внутреннего давления или внешних сил, а также вследствие термических напряжений может иметь место эрозия - механический унос в виде отдельных частиц. Использование разрушающихся теплозащитных систем имеет существенные преимущества перед другими способами тепловой защиты. Главное из них заключается в саморегулировании процесса, т.е. в изменении массового расхода материала покрытия при изменении тепловой нагрузки. Процессы разрушения сопровождаются фазовыми и химическими превращениями, а также вдувом в набегающий поток продуктов разрушения, что приводит к уменьшению градиента температуры поперек пограничного слоя и, следовательно, к снижению теплового потока к стенке. Наиболее распространенные разрушающиеся теплозащитные материалы представляют собой, как правило, сложные композиции, причем отдельные их составляющие обладают различной термохимической стойкостью при заданных условиях внешнего обтекания. Тем не менее в процессе разрушения композиционного материала реализуются не индивидуальные скорости разрушения для каждой компоненты, а некоторая общая скорость, определяемая в основном какой-либо одной компоненты, массовое содержание которой в материале достаточно велико либо она в состоянии образовать механически прочный каркас, обладающей лучшей среди других компонент способностью противостоять аэродинамическому воздействию высокотемпературного потока газа. Роль остальных составляющих композиционного материала не сводится к роли некоторого теплового балласта, а благодаря химическому и физическому воздействию с определяющей компонентой они влияют на унос массы последней. Образующиеся при разрушении теплозащитного покрытия газифицированные вещества попадая в пограничный слой оказывают на него химическое и физическое воздействие. Во многих случаях химические реакции протекают с выделением тепла, что ухудшает тепловой баланс в поверхностном слое. Однако образование в результате этих реакций больших масс газообразных продуктов в итоге нейтрализует этот нежелательный эффект, поскольку приводит к усилению эффекта вдува. Как теплозащитный материал весьма популярен графит. Механизм разрушения его отличается от рассмотренного механизма разрушения композиционных материалов. Отличие обусловлено прежде всего тем, что графит при умеренных давлениях не образует расплава. На поверхности графита могут протекать не только сублимация, но и целый ряд химических реакций, тепловой эффект которых отличается от теплоты сублимации. Разрушение графита начинается задолго до достижения температуры сублимации. Оно вызвано высокой реакционной способностью графита во многих газовых средах, особенно в кислороде и воздухе. При температурах поверхности до 1100
|