Расчёт толщины изоляционного слоя
Проводим расчёт участка И-ТК Задаемся предварительной толщиной изоляционного слоя: Расчет толщины теплоизоляционного слоя производится по нормированной удельной плотности теплового потока через изолированную поверхность. Определяем суммарное термическое сопротивление теплопередаче теплоизоляционной конструкции:
где R – линейное термическое сопротивление теплопередаче, (м·ºС)/Вт; tОС – температура окружающей среды, ºС; qН – нормативные линейные потери, Вт/м; k – коэффициент, учитывающий изменение стоимости теплоты и теплоизоляционной конструкции в зависимости от района строительства и способа прокладки трубопровода. Для подземной бесканальной k = 1 [6];
Полное термическое сопротивление изоляционной конструкции теплопередаче зависит от способа прокладки и в общем случае состоит из следующих величин, (м·К)/Вт:
где Rв – сопротивление теплопередаче от теплоносителя к стенке трубы. При расчётах им пренебрегают ввиду относительной малости; Rтр – сопротивление стенки трубы; Rг.и – сопротивление слоя гидроизоляции. При расчётах им пренебрегают ввиду относительной малости; Rиз – сопротивление изоляционного слоя; Rп.с – сопротивление покровного слоя. Этот слой также интегрирован в изолирующий; Rн – сопротивление теплопередаче к окружающей среде; Rс.к – сопротивление теплопередаче от воздуха в канале к стенке канала. Отсутствует, т.к. у нас бесканальная прокладка; Rк – сопротивление стенки канала; Отсутствует, т.к. у нас бесканальная прокладка; Rгр – сопротивление грунта. Таким образом получаем следующее уравнения для подземной прокладки: R = Rтр + Rиз + Rгр + Rн (4.3) Расчётные уравнения для термических сопротивлений на погонный метр:
где dвн – внутренний диаметр трубопровода; dнар – наружный диаметр трубопровода;
где
где
где Н – глубина заложения теплопровода, принимаем Н = 0,7 м;
Из уравнения (4.3) находим термическое сопротивление изоляции: Rиз = R- (Rтр + Rн + Rгр) (4.9) Rиз = 1,11– (0,0001047+0,042+0,105) = 0,963 (м·К)/Вт
Расчетную толщину для жестких, ячеистых материалов из неуплотняющихся материалов и пенопластов следует принимать ближайшую по соответствующим государственным стандартам и техническим условиям. Для изолируемых трубопроводов с положительными температурами рабочих сред толщина теплоизоляционного слоя должна быть проверена по допустимой температуре на поверхности изоляции [6]. Температура на поверхности тепловой изоляции трубопроводов, расположенных за пределами рабочей или обслуживаемой зоны, не должна превышать температурных пределов применения материалов покровного слоя, но не выше tнп= 75 °С [5]. Определение действительной температуры на наружной поверхности изоляции осуществляется на основании решения уравнения плотности тепловых потоков: теплопроводности, проходящего через слой изоляции трубопровода за счет разности температур (τср-tп) и конвективного, уходящего с наружной поверхности трубопровода – (tп – tо):
Отсюда
Для найденного из уравнения (7.12) значения температуры на поверхности покровного слоя изоляции должно выполняться соотношение tп≤ tнп. Указанное соотношение выполняется.
Аналогично рассчитываем толщину изоляцию для всех участков. Результаты расчетов сводим в таблицу 4.2.
|