ТЕОРЕТИЧЕСКАЯ ЧАСТЬ. Гидролизом солей называется обменное взаимодействие ионов соли с водой, которое приводит образованию слабого электролита и сопровождается изменением pH
Гидролизом солей называется обменное взаимодействие ионов соли с водой, которое приводит образованию слабого электролита и сопровождается изменением pH среды. Суть гидролиза заключается в следующем. При внесении в воду солей, в состав которых входят ионы слабых кислот или слабых оснований, эти ионы связываются с ионами H+ или OH- из воды с образованием слабого электролита, в результате чего нарушается равновесие электролитической диссоциации воды H2O ↔ H+ + OH-. В растворе накапливаются ионы H+ или ОН-, сообщая полученному раствору кислую или щелочную реакцию. Следовательно, гидролизу подвергаются соли, в состав которых входят катионы слабого основания или анионы слабой кислоты или те и другие одновременно. Соли, образованные сильным основанием и сильной кислотой (KCl, LiNO3, Na2SO4 и т.п.) гидролизу не подвергаются. В этом случае ни катион, ни анион соли не будут связывать ионы воды в малодиссоциированные продукты, поэтому равновесие диссоциации воды не нарушается. Реакция среды в растворах таких солей нейтральная (pH = 7). Можно выделить три типа гидролиза: 1. Гидролиз по аниону происходит в растворах солей, состоящих из анионов слабых кислот и катионов сильных оснований (KCN, Na2CO3, Cs3PO4 и т.п.) В качестве примера рассмотрим гидролиз цианида калия KCN. Эта соль образована сильным основанием KOH и слабой кислотой HCN. При растворении в воде KCN полностью диссоциирует на ионы K+ и CN-. Катионы K+ не могут связывать ионы ОH- воды, так как KOH - сильный электролит. Анионы же CN- связывают ионы H+ воды, в результате чего в растворе появляются молекулы слабой кислоты HCN и гидроксид-ионы OH-. Сокращенное ионное уравнение реакции гидролиза имеет вид CN- + H2O ↔ HCN + OH- Для написания уравнения реакции в полной ионной форме прибавим к левой и правой частям уравнения ионы, не претерпевающие в результате гидролиза никаких изменений. В рассматриваемом примере - это катионы калия. K+ + CN- + H2O ↔ HCN + K+ + OH- Молекулярное уравнение легко получить из полной ионной формы, соединяя ионы в молекулы с учетом знаков заряда KCN + H2O ↔ HCN + KOH
Далее при рассмотрении реакций гидролиза сохранен этот порядок записи уравнений: сокращенное ионное уравнение; полное ионное уравнение; молекулярное уравнение. Если соль образована сильным основанием и многоосновной слабой кислотой, то гидролиз протекает ступенчато. Например, гидролиз Na2S (NaOH - сильное основание, H2S - слабая двухосновная кислота) протекает в две ступени: I ступень S2- + H2O ↔ HS- + OH- 2Na+ + S2- + H2O ↔ Na+ + HS- + Na+ + OH- Na2S + H2O ↔ NaHS + NaOH II ступень HS- + H2O ↔ H2S + OH- Na+ + HS- + H2O ↔ H2S + Na+ + OH- NaHS + H2O ↔ H2S + NaOH При комнатной температуре гидролиз проходит только по первой ступени, поскольку HS- (продукт первой ступени) более слабый электролит, чем H2S (продукт второй ступени). При гидролизе солей, образованных слабой кислотой и сильным основанием, в растворе создается избыток гидроксид-ионов, и реакция раствора будет щелочной (pH > 7). 2. Гидролиз по катиону происходит в растворах солей, состоящих из катионов слабых оснований и анионов сильных кислот (NH4Cl, CuSO4, FeCl3 и т.п.). Рассмотрим гидролиз ZnSO4 - соли слабого двукислотного основания Zn(OH)2 и сильной кислоты H2SO4. В этом случае катион Zn2+ связывает гидроксид-ионы воды, образуя катионы основной соли (ZnOH)+. Образование молекулы Zn(OH)2 не происходит, так как ионы (ZnOH)+ диссоциируют намного труднее, чем молекулы Zn(OH)2. В обычных условиях гидролиз идет по первой ступени. Ионы SO42- с ионами H+ слабого электролита не образуют. Таким образом соль гидролизуется по катиону: Zn2+ + H2O ↔ ZnOH+ + H+ 2Zn2+ + 2SO42- + 2H2O ↔ 2ZnOH+ + SO42- + 2H+ + SO42- 2ZnSO4 + 2H2O ↔ (ZnOH)2SO4 + H2SO4 В результате гидролиза такой соли в растворе образуется избыток ионов H+, т.е. pH < 7. 3. Гидролиз по аниону и катиону одновременно происходит в растворах солей, образованных слабыми основаниями и слабыми кислотами (NH4NO2, Al2S3, Fe(CH3COO)3 и т.п.). В этом случае с водой взаимодействует как катион слабого основания, так и анион слабой кислоты, например NH4+ + CH3COO- + H2O ↔ NH4OH + CH3COOH NH4CH3COO + H2O ↔ NH4OH + CH3COOH Гидролиз идет по катиону и аниону, среда близка к нейтральной. pH ~ 7. Как правило, гидролиз - обратимый процесс: протеканию реакции до конца препятствует обратная реакция нейтрализации. Практически необратимо гидролизуются только те соли, продукты гидролиза которых уходят из раствора в виде нерастворимых или газообразных соединений. Необратимо гидролизующиеся соли невозможно получить в результате реакции обмена в водных растворах. Например, вместо ожидаемого Cr2S3 при смешивании растворов CrCl3 и Na2S образуется осадок Cr(OH)3 и выделяется газообразный H2S. 2CrCl3 + 3Na2S + 6H2O = 6NaCl + 2Cr(OH)3↓ + 3H2S↑ На равновесие гидролиза влияют температура и концентрация. Смещение равновесия гидролиза происходит в соответствии с принципом Ле Шателье. Гидролиз - это реакция, обратная нейтрализации, а нейтрализация - экзотермический процесс, следовательно, гидролиз - эндотермический. Поэтому увеличение температуры усиливает гидролиз (то есть смещает равновесие вправо). При постоянной температуре равновесие гидролиза можно сместить вправо (усилить гидролиз), разбавляя раствор водой и удаляя продукты гидролиза. Гидролиз подавляется (равновесие смещается влево), если увеличить концентрацию продуктов гидролиза.
|