Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

АЛЮМИНИЙ





Алюминий – элемент с порядковым номером 13, относительной атомной массой – 26,98154. Находится в III периоде, III группе, главной подгруппе. Электронная конфигурация: 1s22s22p63s23p13d0. Устойчивая степень окисления алюминия – «+3». Образующийся при этом катион обладает оболочкой благородного газа, что способствует его устойчивости, но отношение заряда к радиусу, то есть концентрация заряда, достаточно высоки, что повышает энергию катиона. Эта особенность приводит к тому, что алюминий наряду с ионными соединениями образует целый ряд ковалентных соединений, а его катион подвергается в растворе значительному гидролизу.

Валентность I алюминий может проявлять только при температуре выше 1500оС. Известны Al2O и AlCl.

По физическим свойствам алюминий – типичный металл, с высокой тепло- и электропроводностью, уступающий только серебру и меди. Потенциал ионизации алюминия не очень высок, поэтому от него можно было бы ожидать большой химической активности, но она значительно снижена из-за того, что на воздухе металл пассивируется за счет образования на его поверхности прочной оксидной пленки. Если металл активизировать: а) механически удалить пленку, б) амальгамировать (привести во взаимодействие с ртутью), в) использовать порошок, то такой металл становится настолько реакционноспособным, что взаимодействует даже с влагой и кислородом воздуха, разрушаясь при этом в соответствии с процессом:

4(Al,Hg) +3O2 + 6H2O = 4Al(OH)3 + (Hg)

 

Взаимодействие с простыми веществами.

1. Порошкообразный алюминий при сильном нагревании реагирует с кислородом. Эти условия нужны из-за пассивации, а сама реакция образования оксида алюминия сильно экзотермична – выделяется 1676 кДж/моль теплоты.

2. С хлором и бромом реагирует при стандартных условиях, способен даже загораться в их среде. Не реагирует только с фтором, т.к. фторид алюминия, подобно оксиду, образует на поверхности металла защитную солевую пленку. С иодом реагирует при нагревании и в присутствии воды как катализатора.

3. С серой реагирует при сплавлении, давая сульфид алюминия состава Al2S3.

4. C фосфором также реагирует при нагревании с образованием фосфида: AlP.

5. Непосредственно с водородом алюминий не взаимодействует.

6. С азотом взаимодействует при 800оС, давая нитрид алюминия (AlN). Следует сказать, что горение алюминия на воздухе происходит примерно при таких температурах, поэтому продуктами горения (с учетом состава воздуха) являются одновременно и оксид, и нитрид.

7. С углеродом алюминий взаимодействует при еще более высокой температуре: 2000оС. Карбид алюминия состава Al4C3 относится к метанидам, в его составе нет связей С-С, и при гидролизе выделяется метан: Al4C3 + 12H2O = 4Al(OH)3 + 3CH4

Взаимодействие со сложными веществами

1. С водой активированный (лишенный защитной пленки) алюминий активно взаимодействует с выделением водорода: 2Al (акт.) + 6H2O = 2Al(OH)3 + 3H2 Гидроксид алюминия получается в виде белого рыхлого порошка, отсутствие пленки не мешает прохождению реакции до конца.

2. Взаимодействие с кислотами: а) С кислотами-неокислителями алюминий активно взаимодействует в соответствии с уравнением: 2Al + 6H3O+ + 6H2O = 2[Al(H2O)6]3+ + 3H2,

б) С кислотами-окислителями взаимодействие происходит со следующими особенностями. Концентрированные азотная и серная кислоты, а также очень разбавленная азотная кислота пассивируют алюминий (быстрое окисление поверхности приводит к образованию оксидной пленки) на холоду. При нагревании пленка нарушается, и реакция проходит, но из концентрированных кислот при нагревании выделяются только продукты их минимального восстановления: 2Al + 6H2SO4(конц) = Al2(SO4)3 + 3SO2 6H2O Al + 6HNO3(конц) = Al(NO3)3 + 3NO2 + 3H2O С умеренно разбавленной азотной кислотой в зависимости от условий реакции можно получить NO, N2O, N2, NH4+.

3. Взаимодействие со щелочами. Алюминий является амфотерным элементом (по химическим свойствам), т.к. обладает достаточно большой для металлов электроотрицательностью – 1,61. Поэтому он достаточно легко растворяется в растворах щелочей с образованием гидроксокомплексов и водорода. Состав гидроксокомплекса зависит от соотношения реагентов: 2Al + 2NaOH + 6H2O = 2Na[Al(OH)4] + 3H2 2Al + 6NaOH + 6H2O = 2Na3[Al(OH)6] + 3H2 Соотношение алюминия и водорода определяется электронным балансом происходящей между ними окислительно-восстановительной реакции и от соотношения реагентов не зависит.

4. Низкий потенциал ионизации и большое сродство к кислороду (большая устойчивость оксида) приводят к тому, что алюминий активно взаимодействует с оксидами многих металлов, восстанавливая их. Реакции проходят при начальном нагревании с дальнейшим выделением теплоты, так что температура повышается до 1200о – 3000оС. Смесь 75% алюминиевого порошка и 25% (по массе) Fe3O4 называют «термитом». Раньше реакцию горения этой смеси использовали для сварки рельсов. Восстановление металлов из оксидов при помощи алюминия называется алюмотермией и используется в промышленности как способ получения таких металлов как марганец, хром, ванадий, вольфрам, ферросплавы.

5. С растворами солей алюминий взаимодействует двумя разными способами. 1. Если в результате гидролиза раствор соли имеет кислую или щелочную среду, происходит выделение водорода (с кислыми растворами реакция идет только при значительном нагревании, т.к. защитная оксидная пленка лучше растворяется в щелочах, чем в кислотах). 2Al + 6KHSO4 + (H2O) = Al2(SO4)3 + 3K2SO4 +3H2 2Al + 2K2CO3 + 8H2O = 2K[Al(OH)4] + 2KHCO3 + 3H2. 2. Алюминий может вытеснять из состава соли металлы, стоящие в ряду напряжения правее, чем он, т.е. фактически будет окисляться катионами этих металлов. Из-за оксидной пленки эта реакция проходит не всегда. Например, хлорид-анионы способны нарушать пленку, и реакция 2Al + 3FeCl2 = 2AlCl3 + 3Fe проходит, а аналогичная реакция с сульфатами при комнатной температуре не пойдет. С активированным алюминием любое взаимодействие, не противоречащее общему правилу, пойдет.

Соединения алюминия.

1. Оксид (Al2O3). Известен в виде нескольких модификаций, большинство из которых очень прочны и химически инертны. Модификация α-Al2O3 встречается в природе в виде минерала корунд. В кристаллической решетке этого соединения катионы алюминия иногда частично замещены на катионы других металлов, что придает минералу окраску. Примесь Cr(III) дает красный цвет, такой корунд – это уже драгоценный камень рубин. Примесь Ti(III) и Fe(III) дает сапфир синего цвета. Химически активна аморфная модификация. Оксид алюминия – типичный амфотерный оксид, реагирующий как с кислотами и кислотными оксидами, так и со щелочами и основными оксидами, причем со щелочами предпочтительнее. Продукты реакции в растворе и в твердой фазе при сплавлении отличаются: Na2O + Al2O3 = 2NaAlO2 (сплавление) – метаалюминат натрия, 6NaOH + Al2O3 = 2Na3AlO3 + 3H2O↑ (сплавление) – ортоалюминат натрия, Al2O3 + 3CrO3 = Al2(CrO4)3 (сплавление) – хромат алюминия. Кроме оксидов и твердых щелочей алюминий при сплавлении реагирует с солями, образованными летучими кислотными оксидами, вытесняя их из состава соли: K2CO3 + Al2O3 = 2KAlO2 + CO2↑ Реакции в растворе: Al2O3 + 6HCl = 2[Al(H2O)6]3+ + 6Cl1- + 3H2O Al2O3 +2 NaOH + 3H2O =2 Na[Al(OH)4] – тетрагидроксоалюминат натрия. Тетрагидроксоалюминат-анион на самом деле является тетрагидроксодиакваанионом [Al(OH)4(H2O)2]1-, т.к. координационное число 6 для алюминия предпочтительнее. При избытке щелочи образуется гексагидроксоалюминат: Al2O3 + 6NaOH + 3H2O = 2Na3[Al(OH)6]. Кроме кислот и щелочей можно ожидать реакций с кислыми солями: 6KHSO4 + Al2O3 = 3K2SO4 + Al2(SO4)3 + 3H2O.

3. Гидроксиды алюминия. Известно два гидроксида алюминия – метагидроксид –AlO(OH) и ортогидроксид – Al(OH)3. Оба они в воде не растворяются, но также являются амфотерными, поэтому растворяются в растворах кислот и щелочей, а также солей, имеющих кислую или щелочную среду в результате гидролиза. При сплавлении гидроксиды реагируют аналогично оксиду. Как все нерастворимые основания гидроксиды алюминия при нагревании разлагаются: 2Al(OH)3 = Al2O3 + 3H2O. Растворяясь в щелочных растворах, гидроксиды алюминия не растворяются в водном аммиаке, поэтому их можно осадить аммиаком из растворимой соли: Al(NO3)3 + 3NH3 + 2H2O = AlO(OH)↓ + 3NH4NO3, по этой реакции получается именно метагидроксид. Осадить гидроксид действием щелочей сложно, т.к. получившийся осадок легко растворяется, и суммарная реакция имеет вид: AlCl3 +4 NaOH = Na[Al(OH)4] + 3NaCl

4. Соли алюминия. Почти все соли алюминия хорошо растворимы в воде. Нерастворимы фосфат AlPO4 и фторид AlF3. Т.к. катион алюминия имеет большую концентрацию заряда, его аквакомплекс приобретает свойства катионной кислоты: [Al(H2O)6]3+ + H2O = H3O+ + [Al(H2O)5(OH)]2+, т.е. соли алюминия подвергаются сильному гидролизу по катиону. В случае солей слабых кислот из-за взаимного усиления гидролиза по катиону и аниону гидролиз становится необратимым. В растворе полностью разлагаются водой или не могут быть получены по реакции обмена карбонат, сульфит, сульфид и силикат алюминия: Al2S3 + 6H2O = 2Al(OH)3↓ + 3H2S↑ 2Al(NO3)3 + 3K2CO3 + 3H2O = 2Al(OH)3↓ + 3CO2↑ + 6KNO3. Для некоторых солей гидролиз становится необратимым при нагревании. Влажный ацетат алюминия при нагревании разлагается в соответствии с уравнением: 2Al(OOCCH3)3 + 3H2O = Al2O3 + 6CH3COOH↑ В случае галогенидов алюминия разложению соли способствует уменьшение растворимости газообразных галогеноводородов при нагревании: AlCl3 + 3H2O = Al(OH)3↓ + 3HCl↑. Из галогенидов алюминия только фторид является ионным соединением, остальные галогениды – ковалентные соединения, их температуры плавления существенно ниже, чем у фторида, хлорид алюминия способен возгоняться. При очень высокой температуре в парах находятся одиночные молекулы галогенидов алюминия, имеющие плоское треугольное строение из-за sp2-гибридизации атомных орбиталей центрального атома. Основное состояние этих соединений в парах и в некоторых органических растворителях – это димеры, например, Al2Cl6. Галогениды алюминия являются сильными кислотами Льюиса, т.к. имеют вакантную атомную орбиталь. Растворение в воде, поэтому происходит с выделением большого количества теплоты. Интересным классом соединений алюминия (как и других трехвалентных металлов) являются квасцы – 12-водные двойные сульфаты MI MIII(SO4)2, которые при растворении как все двойные соли дают смесь соответствующих катионов и анионов.

5. Комплексные соединения. Рассмотрим гидроксокомплексы алюминия. Это соли, в которых комплексная частица является анионом. Все соли растворимые. Разрушаются при взаимодействии с кислотами. При этом сильные кислоты растворяют образующийся ортогидроксид, а слабые или соответствующие им кислотные оксиды (H2S, CO2, SO2) его осаждают: K[Al(OH)4] +4HCl = KCl + AlCl3 + 4H2O K[Al(OH)4] + CO2 = Al(OH)3↓ + KHCO3

При прокаливании гидроксоалюминаты превращаются в орто - или метаалюминаты, теряя воду.

 

 

Железо

Элемент с порядковым номером 26, с относительной атомной массой 55,847. Относится к 3d-семейству элементов, имеет электронную конфигурацию: [Ar]3d64s2 и в периодической системе находится в IV периоде, VIII группе, побочной подгруппе. В соединениях железо преимущественно проявляет степени окисления +2 и +3. Ион Fe3+ имеет наполовину заполненную d-электронную оболочку, 3d5, что придает ему дополнительную устойчивость. Значительно труднее достигаются степени окисления +4, +6, +8.

По физическим свойствам железо – серебристо-белый, блестящий, относительно мягкий, ковкий, легко намагничивающийся и размагничивающийся металл. Температура плавления 1539оС. Имеет несколько аллотропных модификаций, отличающихся типом кристаллической решетки.

Свойства простого вещества.

1. При горении на воздухе образует смешанный оксид Fe3O4, а при взаимодействии с чистым кислородом – Fe2O3. Порошкообразное железо пирофорно – самовоспламеняется на воздухе.

2. Фтор, хлор и бром легко реагируют с железом, окисляя его до Fe3+. С иодом образуется FeJ2, так как трехвалентный катион железа окисляет иодид-анион, в связи с чем, соединения FeJ3 не существует.

3. По аналогичной причине не существует соединения Fe2S3, а взаимодействие железа и серы при температуре плавления серы приводит к соединению FeS. При избытке серы получается пирит – дисульфид железа (II) – FeS2. Образуются также нестехиометрические соединения.

4. С остальными неметаллами железо реагирует при сильном нагревании, образуя твердые растворы или металлоподобные соединения. Можно привести реакцию, идущую при 500оС: 3Fe + C = Fe3C. Такое соединение железа и углерода называется цементит.

5. Со многими металлами железо образует сплавы.

6. На воздухе при комнатной температуре железо покрыто оксидной пленкой, поэтому с водой не взаимодействует. Взаимодействие с перегретым паром дает следующие продукты: 3Fe + 4H2O (пар) = Fe3O4 + 4H2↑. В присутствии кислорода железо взаимодействует даже с влагой воздуха: 4Fe + 3O2 + 6H2O = 4Fe(OH)3. Приведенное уравнение отражает процесс ржавления, которому подвергается в год до 10% металлических изделий.

7. Так как железо стоит в ряду напряжения до водорода, оно легко реагирует с кислотами-неокислителями, но окисляется при этом только до Fe2+.

8. Концентрированные азотная и серная кислоты пассивируют железо, но при нагревании реакция происходит. Разбавленная азотная кислота реагирует и при комнатной температуре. Со всеми кислотами-окислителями железо дает соли железа (III) (по некоторым сведениям, с разбавленной азотной кислотой возможно образование нитрата железа (II)), а восстанавливает HNO3 (разб.) до NO, N2O, N2, NH4+ в зависимости от условий, а HNO3 (конц.) – до NO2 из-за нагревания, которое необходимо для прохождения реакции.

9. Железо способно реагировать с концентрированными (50%) щелочами при нагревании: Fe + 2KOH + 2H2O = K2[Fe(OH)4] + H2

10. Реагируя с растворами солей менее активных металлов, железо вытеняет эти металлы из состава соли, превращаясь в двухвалентный катион: CuCl2 + Fe = FeCl2 + Cu.

 

Свойства соединений железа.

Fe2+ Отношение заряда к радиусу данного катиона близко к таковому у Mg2+, поэтому химическое поведение оксида, гидроксида и солей двухвалентного железа подобно поведению соответствующих соединений магния. В водном растворе катион двухвалентного железа образует аквакомплекс [Fe(H2O)6]2+ бледно-зеленого цвета. Этот катион легко окисляется даже прямо в растворе кислородом воздуха. В растворе FeCl2 содержатся комплексные частицы [Fe(H2O)4Cl2]0. Концентрация заряда такого катиона невелика, поэтому гидролиз солей умеренный.

1. FeO - основной оксид, черного цвета, в воде не растворяется. Легко растворяется в кислотах. При нагревании свыше 5000С диспропорционирует: 4FeO = Fe + Fe3O4. Он может быть получен при осторожном прокаливании соответствующих гидроксида, карбоната и оксалата, тогда как термическое разложение других солей Fe2+ приводит к образованию оксида трехвалентного железа: FeC2O4 = FeO + CO↑ + CO2­↑, но 2 FeSO4= Fe2O3 + SO2↑ + SO3↑ 4Fe(NO3)2 = 2Fe2O3 + 8NO2↑ + O2↑ Сам оксид железа (II) может выступать как окислитель, например, при нагревании идет реакция: 3FeO + 2NH3 = 3Fe + N2↑ +3H2O

2. Fe(OH)2 – гидроксид железа (II) – нерастворимое основание. Реагирует с кислотами. С кислотами-окислителями происходит одновременно кислотно-основное взаимодействие и окисление до трехвалентного железа: 2Fe(OH)2 + 4H2SO4(конц) = Fe2(SO4)3 + SO2↑ + 4H2O. Может быть получен по обменной реакции из растворимой соли. Это соединение белого цвета, которое на воздухе сначала зеленеет из-за взаимодействия с влагой воздуха, а затем буреет из-за окисления кислородом воздуха: 4Fe(OH)2 + 2H2O + O2 = 4Fe(OH)3.

3. Соли. Как уже говорилось, большинство солей Fe(II) медленно окисляются на воздухе или в растворе. Наиболее устойчивой к окислению является соль Мора – двойной сульфат железа (II) и аммония: (NH4)2Fe(SO4)2.6H2O. Катион Fe2+ легко окисляется до Fe3+, поэтому большинство окислителей, в частности, кислоты-окислители окисляют соли двухвалентного железа. При обжиге сульфида и дисульфида железа получается оксид железа (III) и оксид серы (IV): 4FeS2 + 11O2 = 2Fe2O3 + 8SO2↑ Сульфид железа (II) растворяется также в сильных кислотах: FeS + 2HCl = FeCl2 + 2H2S↑ Карбонат железа (II) нерастворим, тогда как гидрокарбонат в воде растворяется.

Fe3+ По отношению заряда к радиусу данный катион соответствует катиону алюминия, поэтому свойства соединений катиона железа (III) аналогичны соответствующим соединениям алюминия.

Fe2O3 – гематит, амфотерный оксид, у которого преобладают основные свойства. Амфотерность проявляется в возможности сплавления с твердыми щелочами и карбонатами щелочных металлов: Fe2O3 + 2NaOH = H2O↑ + 2NaFeO2 – желтого или красного цвета, Fe2O3 + Na2CO3 = 2NaFeO2 + CO2↑. Ферраты (II) разлагаются водой с выделением Fe2O3.nH2O.

Fe3O4 - магнетит, вещество черного цвета, которое можно рассматривать либо как смешанный оксид – FeO.Fe2O3, либо как оксометаферрат (III) железа (II): Fe(FeO2)2. При взаимодействии с кислотами дает смесь солей: Fe3O4 + 8HCl = FeCl2 + 2FeCl3 + 4H2O.

Fe(OH)3 или FeO(OH) – красно-бурый студенистый осадок, амфотерный гидроксид. Кроме взаимодействий с кислотами реагирует с горячим концентрированным раствором щелочи и сплавляется с твердыми щелочами и карбонатами: Fe(OH)3 + 3KOH = K3[Fe(OH)6].

Соли. Большинство солей трехвалентного железа растворимо. Так же как соли алюминия, они подвергаются сильному гидролизу по катиону, который в присутствии анионов слабых и нестойких или нерастворимых кислот может стать необратимым: 2FeCl3 + 3Na2CO3 + 3H2O = 2Fe(OH)3 + 3CO2↑ + 6NaCl. При кипячении раствора хлорида железа (III) гидролиз также можно сделать необратимым, т.к. растворимость хлороводорода как любого газа при нагревании уменьшается и он уходит из сферы реакции: FeCl3 + 3H2O = Fe(OH)3 + 3HCl↑ (при нагревании).

Окислительная способность данного катиона очень высока, особенно, по отношению к превращению в катион Fe2+: Fe3+ + ē = Fe2+ φo=0,77в. В результате чего:

а) растворы солей трехвалентного железа окисляют все металлы вплоть до меди: 2Fe(NO3)3 + Cu = 2Fe(NO3)2 + Cu(NO3)2,

б) обменные реакции с солями, содержащими легко окисляемые анионы, проходят одновременно с их окислением: 2FeCl3 + 2KJ = FeCl2 + J2 + 2KCl 2FeCl3 + 3Na2S = 2FeS + S + 6NaCl

2FeBr3 + 2KCN = 2FeBr2 + (CN)2↑ + 2KBr

Как и другие трехвалентные катионы, железо (III) способно к образованию квасцов – двойных сульфатов с катионами щелочных металлов или аммония, например: NH4Fe(SO4)2.12H2O.

Комплексные соединения. Оба катиона железа склонны к образованию анионных комплексов, особенно железо (III). FeCl3 + KCl = K[FeCl4], FeCl3 + Cl2 = Cl+[FeCl4]-. Последняя реакция отражает действие хлорида железа (III) как катализатора электрофильного хлорирования. Интерес представляют цианидные комплексы: 6KCN + FeSO4 = K4[Fe(CN)6] – гексацианоферрат (II) калия, желтая кровяная соль. 2K4[Fe(CN)6] + Cl2 = 2K3[Fe(CN)6] + 2KCl – гексацианоферрат (III) калия, красная кровяная соль. Комплекс двухвалентного железа дает с солью трехвалентного железа синий осадок или раствор в зависимости от соотношения реагентов. Такая же реакция происходит между красной кровяной солью и любой солью двухвалентного железа. В первом случае осадок называли берлинской лазурью, во втором – турнбулевой синью. Позже выяснилось, что, по крайней мере, растворы имеют одинаковый состав: K[Fe2(CN)6] – гексацианоферрат железа (II,III) калия. Описанные реакции являются качественными на наличие в растворе соответствующих катионов железа. Качественной реакцией на наличие катиона трехвалентного железа является появленме кроваво-красной окраски при взаимодействии с тиоцианатом (роданидом) калия:2FeCl3 + 6KCNS = 6KCl + Fe[Fe(CNS)6].

Fe+6. Степень окисления +6 для железа малоустойчива. Удается получить только анион FeO42-, который существует только при pH>7-9, но при этом является сильным окислителем.

Fe2O3 + 4KOH + 3KNO3 = 2K2FeO4 + 3KNO2 + 2H2O

Fe (опилки) + H2O + KOH + KNO3 = K2FeO4 + KNO2 + H2

2Fe(OH)3 + 3Cl2 + 10KOH = 2K2FeO4 + 6KCl + 6H2O

Fe2O3 + KClO3 + 4KOH = 2K2FeO4 + KCl + 2H2O

4K2FeO4 + 6H2O = 4FeO(OH)↓ + 8KOH + 3O2

4BaFeO4 (нагревание) = 4BaO + 2Fe2O3 + 3O2

2K2FeO4 + 2CrCl3 + 2HCl = FeCl3 + K2Cr2O7 + 2KCl + H2O

 

Получение железа в промышленности:

А) доменный процесс: Fe2O3 + C = 2FeO + CO↑

FeO + C = Fe + CO↑

FeO + CO = Fe + CO2

Б) алюмотермия: Fe2O3 + Al = Al2O3 + Fe

 

 

ХРОМ – элемент с порядковым номером 24, с относительной атомной массой 51,996. Относится к 3d-семейству элементов, имеет электронную конфигурацию [Ar]3d54s1 и в периодической системе находится в IV периоде, VI группе, побочной подгруппе. Возможные степени окисления: +1, +2, +3, +4, +5, +6. Из них наиболее устойчивыми являются +2, +3, +6, а минимальной энергией обладает +3.

По физическим свойствам хром – серовато-белый, блестящий, твердый металл с температурой плавления 1890оС. Прочность его кристаллической решетки обусловлена наличием пяти неспаренных d-электронов, способных к частичному ковалентному связыванию.

Химические свойства простого вещества.

При низких температурах хром инертен из-за наличия оксидной пленки, не взаимодействует с водой и воздухом.

1. С кислородом взаимодействует при температурах выше 600оС. При этом образуется оксид хрома (III) – Cr2O3.

2. Взаимодействие с галогенами происходит по-разному: Cr + 2F2 = CrF4 (при комнатной температуре), 2Cr + 3Cl2(Br2) = 2CrCl3(Br3), Cr + J2 = CrJ2 (при значительном нагревании). Следует сказать, что иодид хрома (III) может существовать и получается по обменной реакции в виде кристаллогидрата CrJ3.9H2O, но его термическая устойчивость невелика, и при нагревании он разлагается на CrJ2 и J2.

3. При температуре выше 120оС хром взаимодействует с расплавленной серой, давая сульфид хрома (II) – CrS (черного цвета).

4. При температурах выше 1000оС хром реагирует с азотом и углеродом, давая нестехиометрические, химически инертные соединения. Среди них можно отметить карбид с примерным составом CrC, который по твердости приближается к алмазу.

5. С водородом хром не реагирует.

6. Реакция с водяным паром проходит следующим образом: 2Cr + 3H2O = Cr2O3 + 3H2

7. Реакция с кислотами-неокислителями происходит достаточно легко, при этом образуется аква-комплекс [Cr(H2O)6]2+ небесно-голубого цвета, который устойчив только в отсутствие воздуха или в атмосфере водорода. В присутствии кислорода реакция идет иначе: 4Cr + 12HCl + 3O2 = 4CrCl3 + 6H2O. Разбавленные кислоты, насыщенные кислородом, даже пассивируют хром за счет образования на поверхности прочной оксидной пленки.

8. Кислоты- окислители: азотная кислота любой концентрации, серная концентрированная, хлорная кислота пассивируют хром так, что после обработки поверхности этими кислотами он уже не реагирует и с другими кислотами. Пассивация снимается при нагревании. При этом получаются соли хрома (III) и диоксиды серы или азота (из хлорной кислоты – хлорид). Пассивация за счет образования солевой пленки происходит при взаимодействии хрома с фосфорной кислотой.

9. Непосредственно со щелочью хром не реагирует, но вступает в реакцию со щелочными расплавами с добавлением окислителей: 2Cr + 2Na2CO3(ж) + 3O2 = 2Na2CrO4 + 2CO2

10. Хром способен реагировать с растворами солей, вытесняя менее активные металлы (стоящие правее него в ряду напряжения) из состава соли. Сам хром при этом превращается в катион Cr2+.







Дата добавления: 2015-08-29; просмотров: 632. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия