Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Химические свойства соединений хрома.





Cr2+. Концентрация заряда двухвалентного катиона хрома соответствует концентрации заряда катиона магния и двухвалентного катиона железа, поэтому целый ряд свойств, особенно, кислотно-основное поведение этих катионов близко. При этом, как уже было сказано, Cr2+ - сильный восстановитель, поэтому в растворе идут следующие реакции: 2CrCl2 + 2HCl = 2CrCl3 + H2↑ 4CrCl2 + 4HCl + O2 = 4CrCl3 + 2H2O. Достаточно медленно, но происходит даже окисление водой: 2CrSO4 + 2H2O = 2Cr(OH)SO4 + H2↑. Окисление двухвалентного хрома происходит даже легче, чем окисление двухвалентного железа, соли также подвергаются гидролизу по катиону в умеренной степени (т.е., доминирующей является первая ступень).

CrO – основной оксид, черного цвета, пирофорен. При 700оС диспропорционирует: 3CrO = Cr2O3 + Cr. Он может быть получен при термическом разложении соответствующего гидроксида в отсутствие кислорода.

Cr(OH)2 – нерастворимое основание желтого цвета. Реагирует с кислотами, при этом кислоты-окислители одновременно с кислотно-основным взаимодействием окисляют двухвалентный хром, в определенных условиях это происходит и с кислотами-неокислителями (окислитель – H+). При получении по обменной реакции гидроксид хрома (II) быстро зеленеет из-за окисления:

4Cr(OH)2 + O2 = 4CrO(OH) + 2H2O.

Окислением сопровождается и разложение гидроксида хрома (II) в присутствии кислорода: 4Cr(OH)2 = 2Cr2O3 + 4H2O.

Cr3+. Соединения хрома (III) по химическим свойствам похожи на соединения алюминия и железа (III). Оксид и гидроксид амфотерны. Соли слабых нестойких и нерастворимых кислот(H2CO3, H2SO3, H2S, H2SiO3) подвергаются необратимому гидролизу:

2CrCl3 + 3K2S + 6H2O = 2Cr(OH)3↓ + 3H2S↑ + 6KCl; Cr2S3 + 6H2O = 2Cr(OH)3↓ + 3H2S↑.

Но катион хрома (III) – не очень сильный окислитель, поэтому сульфид хрома (III) существует и может быть получен в безводных условиях, правда, не из простых веществ, так как разлагается при нагревании, а по реакции: 2CrCl3(кр) + 2H2S (газ) = Сr2S3(кр) + 6HCl↑. Окислительных свойств трёхвалентного хрома недостаточно для того, чтобы растворы его солей взаимодействовали с медью, но с цинком такая реакция проходит: 2CrCl3 + Zn = 2CrCl2 + ZnCl2.

Cr2O3 – амфотерный оксид зеленого цвета, имеет очень прочную кристаллическую решетку, поэтому химическую активность проявляет только в аморфном состоянии. Реагирует, в основном, при сплавлении с кислотными и основными оксидами, с кислотами и щелочами, а также с соединениями, имеющими кислотные или основные функции:

Cr2O3 + 3K2S2O7 = Cr2(SO4)3 + 3K2SO4; Cr2O3 + K2CO3 = 2KCrO2 + CO2↑.

Cr(OH)3 (CrO(OH), Cr2O3*nH­­2O) – амфотерный гидроксид серо-синего цвета. Растворяется и в кислотах, и в щелочах. При растворении в щелочах образуются гидроксокомлексы, в которых катион хрома имеет координационное число 4 или 6:

Cr(OH)3 + NaOH = Na[Cr(OH)4]; Cr(OH)3 + 3NaOH = Na3[Cr(OH)6].

Гидроксокомплексы легко разлагаются кислотами, при этом с сильными и слабыми кислотами процессы различны:

Na[Cr(OH)4] + 4HCl = NaCl +CrCl3 + 4H2O; Na[Cr(OH)4] + CO2 = Cr(OH)3↓ + NaHCO3.

Соединения Cr(III) являются не только окислителями, но и восстановителями по отношению к превращению в соединения Cr(VI). Особенно легко реакция проходит в щелочной среде:

2Na3[Cr(OH)6] + 3Cl2 + 4NaOH = 2Na2CrO4 + 6NaCl + 8H2O E0 =­ - 0,72­ В.

В кислой среде: 2Cr3+ → Cr2O72- E0 =­ +1,38 В.

Cr+6. Все соединения Cr(VI) – сильные окислители. Кислотно-основное поведение этих соединений похоже на поведение соединений серы в той же степени окисления. Такое сходство свойств соединений элементов главных и побочных подгрупп в максимальной положительной степени окисления характерно для большинства групп периодической системы.

CrO3 - соединение тёмно-красного цвета, типичный кислотный оксид. При температуре плавления разлагается: 4CrO3 = 2Cr2O3 + 3O2↑.

Пример окислительного действия: CrO3 + NH3 = Cr2O3 + N2↑ + H2O (При нагревании).

Оксид хрома(VI) легко растворяется в воде, присоединяя её и превращаясь в гидроксид:

H2CrO4 - хромовая кислота, является сильной двухосновной кислотой. В свободном виде не выделяется, т.к. при концентрации выше 75% идет реакция конденсации с образованием двухромовой кислоты: 2H2CrO4 (жёлт.) = H2Cr2O7 (оранж.) + H2O.

Дальнейшее концентрирование ведёт к образованию трихромовой (H2Cr3O10) и даже тетрахромовой (H2Cr4O13) кислот.

Димеризация хромат-аниона происходит также при подкислении. В результате соли хромовой кислоты при pH > 6 существуют как хроматы(K2CrO4) жёлтого цвета, а при pH < 6 как бихроматы(K2Cr2O7) оранжевого цвета. Большинство бихроматов растворимы, а растворимость хроматов чётко соответствует растворимости сульфатов соответствующих металлов. В растворах возможно взаимопревращения соответствующих солей:

2K2CrO4 + H2SO4 = K2Cr2O7 + K2SO4 + H2O; K2Cr2O7 + 2KOH = 2K2CrO4 + H2O.

Взаимодействие бихромата калия с концентрированной серной кислотой ведёт к образованию хромового ангидрида, нерастворимого в ней:

K2Cr2O7(крист.) + + H2SO4(конц.) = 2CrO3↓ + K2SO4 + H2O;

Бихромат аммония при нагревании претерпевает внутримолекулярную окислительно-восстановительную реакцию: (NH4)2Cr2O7 = Cr2O3 + N2↑ + 4H2O↑.

ГАЛОГЕНЫ («рождающие соли»)

Галогенами называются элементы главной подгруппы VII группы периодической системы. Это фтор, хлор, бром, иод, астат. Строение внешнего электронного слоя их атомов: ns2np5. Т.о., на внешнем электронном уровне находится 7 электронов, и до устойчивой оболочки благородного газа им не хватает всего одного электрона. Являясь предпоследними элементами в периоде, галогены имеют наименьший в периоде радиус. Все это приводит к тому, что галогены проявляют свойства неметаллов, имеют большую электроотрицательность и высокий потенциал ионизации. Галогены являются сильными окислителями, они способны принимать электрон, превращаясь в анион с зарядом "1-" или проявлять степень окисления «-1» при ковалентном связывании с менее электроотрицательными элементами. В то же время, при движении по группе сверху вниз радиус атома увеличивается и окислительная способность галогенов уменьшается. Если фтор является самым сильным окислителем, то иод при взаимодействии с некоторыми сложными веществами, а также с кислородом и другими галогенами проявляет восстановительные свойства.

Атом фтора отличается от других членов группы. Во-первых, он проявляет только отрицательную степень окисления, так как является самым электроотрицательным элементом, а во-вторых, как любой элемент II периода, он имеет только 4 атомных орбитали на внешнем электронном уровне, три из которых заняты неподеленными электронными парами, на четвертой находится неспаренный электрон, который в большинстве случаев и является единственным валентным электроном. В атомах остальных элементов на внешнем уровне имеется незаполненный d-электронный подуровень, куда может переходить возбужденный электрон. Каждая неподеленная пара при распаривании дает два электрона, поэтому основные степени окисления хлора, брома и иода, кроме «-1», это «+1», «+3», «+5», «+7». Менее устойчивыми, но принципиально достижимыми являются степени окисления «+2», «+4» и «+6».

Как простые вещества все галогены представляют собой двухатомные молекулы с одинарной связью между атомами. Энергии диссоциации связей в ряду молекул F2, Cl2, Br2, J2 следующие: 151 кДж/моль, 239 кДж/моль, 192 кДж/моль, 149 кДж/моль. Монотонное уменьшение энергии связи при переходе от хлора к иоду легко объясняется увеличением длины связи из-за роста радиуса атома. Аномально низкая энергия связи в молекуле фтора имеет два объяснения. Первое касается самой молекулы фтора. Как уже говорилось, фтор имеет очень маленький радиус атома и целых семь электронов на внешнем уровне, поэтому при сближении атомов при образовании молекулы возникает межэлектронное отталкивание, в результате чего перекрывание орбиталей происходит не полностью, и порядок связи в молекуле фтора несколько меньше единицы. Согласно второму объяснению, в молекулах остальных галогенов существует дополнительное донорно-акцепторное перекрывание неподеленной электронной пары одного атома и свободной d-орбитали другого атома, по два таких противоположных взаимодействия на молекулу. Т.о., связь в молекулах хлора, брома и иода определяется как почти тройная с точки зрения наличия взаимодействий. Но донорно-акцепторные перекрывания происходят лишь частично, и связь имеет порядок (для молекулы хлора) 1,12.

Физические свойства: При обычных условиях фтор – это трудно сжижаемый газ (температура кипения которого -1870С) светло-желтого цвета, хлор – легко сжижаемый (температура кипения равна –34,2 0С) газ желто-зеленого цвета, бром – бурая легко испаряющаяся жидкость, иод – твердое вещество серого цвета с металлическим блеском. В твердом состоянии все галогены образуют молекулярную кристаллическую решетку, характеризующуюся слабыми межмолекулярными взаимодействиями. В связи с чем иод имеет склонность к возгонке – при нагревании при атмосферном давлении переходит в газообразное состояние (образует фиолетовые пары), минуя жидкое. При движении по группе сверху вниз температуры плавления и кипения увеличиваются как за счет увеличения молекулярной массы веществ, так и за счет усиления сил Ван-дер-Ваальса, действующих между молекулами. Величина этих сил тем больше, чем больше поляризуемость молекулы, которая, в свою очередь, возрастает с увеличением радиуса атома.

Все галогены плохо растворяются в воде, но хорошо – в неполярных органических растворителях, например, в четыреххлористом углероде. Плохая растворимость в воде связана с тем, что при образовании полости для растворения молекулы галогена вода теряет достаточно прочные водородные связи, взамен которых между ее полярной молекулой и неполярной молекулой галогена никаких сильных взаимодействий не возникает. Растворение галогенов в неполярных растворителях соответствует ситуации: «подобное растворяется в подобном», когда характер рвущихся и образующихся связей одинаковый.







Дата добавления: 2015-08-29; просмотров: 793. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия