Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. 1. Найти усилия в тягах, реакции в опоре С и угловое смещение (поворот бруса вокруг т





1. Найти усилия в тягах, реакции в опоре С и угловое смещение (поворот бруса вокруг т. С), как функции от величины силы Р. Для определения величин усилий в тягах в зависимости от Р применим метод сечений. Сделав сечение по всем тягам и приложив в местах сечений усилия N 1, N 2 и N 3, возникающие в тягах, рассмотрим равновесие остав­шейся части, нагруженной продольными усилиями в тягах N 1, N 2 и N 3 реакциями опоры С (RC и HC) и силой Р (рис. 1, б). Составив уравнения равновесия статики для оставшейся части, получим:

1) , НC = 0; (1)

2) , - Р + N 1 + RC - N 2 - N 3 = 0; (2)

3) , . (3)

Рис.1

 

Из уравнений равновесия видно, что система дважды стати­чески неопределима, т.к. два уравнения равновесия (2) и (3) содержат в своем составе четыре неизвестных. Поэтому для реше­ния задачи необходимо составить два дополнительных уравнения совместности деформаций, раскрывающих статическую неопреде­лимость системы.

Для составления дополнительных уравнений рассмотрим де­формированное состояние системы (рис. 1, в), имея в виду, что брус абсолютно жесткий и поэтому после деформации тяг останет­ся прямолинейным.

Эти дополнительные уравнения совместности деформаций по­лучим из подобия треугольников ВСВ 1= DCD 1 и BCB 1= ECE 1:

и .

Решая эти уравнения, получим:

(4)

. (5)

Выразив деформации тяг по формуле определения абсолютного удлинения:

и подставив эти значения в уравнения (4) и (5), получим:

(6)

. (7)

Подставив найденные значения N 2 и N 3 в уравнение (3) оп­ределяем величину N 1 :

; N 1=0,3333 P.

Зная N 1, из уравнений (6) и (7), находим N 2 и N 3:

.

Опорную реакцию RC определяем из уравнения (2), подста­вив найденные значения N 1, N 2 и N 3:

-P + 0,333 P + RC - 0,167 P - 0,833 P = 0; RC = 1,667 P.

После определения величин усилий в тягах N 1, N 2, N 3 и реак­ции RC необходимо проверить правильность их вычисления. Для этого составим уравнение равновесия статики :

- N 1× a - RC (a + b) + N 2 (a + b + c) + N 3 (a + b + c + d) = 0;

0 = 0.

Следовательно, N 1, N 2, N 3 и RC определены правиль­но.

Угловое смещение бруса (угол ), ввиду его малости, находим как тангенс угла наклона бруса АЕ:

[рад].

2. Определить в процессе увеличения нагрузки Р такую ее величину, при которой напряжение в одной из тяг достигнет предела текучести. Для вы­числения величины Р, при которой напряжение в одной из тяг достигнет предела текучести s T, определим нормальные напряже­ния, возникающие в тягах, учитывая то, что тяги работают на рас­тяжение:

Полученные величины напряжений показывают, что в тяге 3 напряжение достигнет предела текучести раньше, чем в тягах 1 и 2, так как и . Поэтому, приравняв напряжение пре­делу текучести , определим величину Р, при которой нормальное напряжение в тяге 3 достигнет предела текучести :

кПа,

откуда

кН.

3. Определить в процессе увеличения нагрузки Р ее предельную величину, при которой напряжения в трех тягах достигнут предела текучести, ре­акцию опоры С и соответствующий этому пре­дельному состоянию угол. При исчерпании несущей спо­собности всех тяг напряжения в них достигнут предела текучести . В этом случае предельные усилия, которые возникнут в тягах, будут равны:

кH;

кH;

кH.

Предельную величину внешней нагрузки, соответствующую ис­черпанию несущей способности, найдем из уравнения (3), под­ставив в него предельные значения , , :

; кН.

Предельную величину реакции определяем из уравнения (2):

-72 + 48 + - 24 - 48 = 0; = 96 кН.

При определении наименьшего угла поворота бруса, соответст­вующего предельному состоянию системы, необходимо знать, в какой из тяг текучесть наступит позже.

Полученные величины напряжений (см. п. 2) показывают, что в тягах 1 и 2 напряжения достигнут предела текучести одновремен­но, но позже, чем в тяге 3. Поэтому предельный угол поворота бруса определяем для момента перехода материала тяг 1 и 2 в плас­тическое состояние:

рад,

или

рад.

4. Найти несущую способность из расчетов по методам допускаемых напряжений и разруша­ющих нагрузок при одном и том же коэффициенте запаса прочности. Сопоставить результаты и сделать вывод. Из предыдущих расчетов (см. п. 2) видно, что текучесть материала раньше появится в тяге 3, т.к. и . Поэтому для определения величины грузоподъемности из расчета по методу допускаемых напряжений приравниваем напря­жение в этой тяге к допускаемому напряжению:

кПа,

,

кH.

Несущая способность конструкции из расчета по методу раз­рушающих нагрузок получим путем деления ранее полученного значения PПР = 72 кН на коэффициент запаса n 1 = 1,5:

кH.

Сравнивая полученные величины, видим, что несущая спо­собность из расчета по методу разрушающих нагрузок больше несу­щей способности из расчета по методу допускаемых напряжений на , что подтверждает известное положение о том, что метод допускаемых напряжений, в отличии от метода разрушающих нагрузок, не позволяет определить полную несущую способность системы. Это объясняется тем, что для статически неопределимых систем, переход одного элемента в пластическую стадию работы, как правило, не означает наступления предель­ного состояния. Переход системы в предельное состояние отождествляется с превращением ее из неизменяемой в геометри­чески изменяемую систему. Известно, что в статически неопреде­лимой системе разрушение “лишних связей” не превращает ее в геометрически изменяемую. Так как реальные сооружения чаще всего представляют собой многократно статически неопределимые системы, материал которых обладает свойством пластичности, по­этому метод предельного равновесия имеет важное значение для раскрытия истинных резервов их несущей способности.

 

 







Дата добавления: 2015-08-30; просмотров: 884. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия