Решение. I. Определение грузоподъемности системы расчетом по упругой стадии деформаций
I. Определение грузоподъемности системы расчетом по упругой стадии деформаций Найдем степень статической неопределимости системы. В данной конструкции имеем три неизвестные продольные силы в стержнях. Число уравнений статики, которые можно составить для системы сил, сходящихся в одной точке, равно двум. Таким образом, число неизвестных больше числа уравнений равновесия на единицу, и система является один раз статически неопределимой. Можно определить степень статической неопределимости и по-другому. Шарнир Для раскрытия статической неопределимости требуется составить уравнения статики, одно (по числу лишних связей) кинематическое соотношение (условие совместности деформаций) и физические уравнения. Рекомендуем начинать решение задачи с записи условия совместности деформаций, построив предполагаемый план перемещений. Для составления уравнений равновесия строим план сил, направления усилий на котором должны быть согласованы с планом перемещений. 1. Уравнение совместности деформаций. Построим предполагаемый план перемещений (рис. 2). Рис.2
Величины двух абсолютных деформаций задаем произвольно (например, считаем, что стержни 2 и 3 удлиняются, и откладываем произвольные отрезки Разложим полное перемещение шарнира
Исключив из этих выражений
Допускается составлять уравнение совместности деформаций приближенно, измеряя отношения между абсолютными деформациями по построенному в масштабе плану перемещений. Для приближенного определения связи между абсолютными деформациями представим эту связь в виде
Неизвестные параметры данной зависимости
Построив второй план перемещений в предположении, что
2. Уравнения равновесия. Составим их на основании плана сил. Нарисуем план сил, вырезав узел
Рис.3
Запишем два независимых уравнения статики. Для данной системы таковыми являются:
3. Физические соотношения. Поскольку расчет ведется по упругой стадии деформаций, то материал конструкции подчиняется закону Гука и для каждого стержня записываем физические уравнения:
Полученную систему уравнений решаем относительно усилий
Найденное решение показывает, что усилие в первом стержне Для проверки прочности конструкции определим напряжения в стержнях системы:
При расчете по упругой стадии деформации считаем, что предельное состояние конструкции наступит тогда, когда потечет один, наиболее напряженный, стержень. Поскольку пластичный материал имеет одинаковые пределы текучести при сжатии и растяжении, то знак напряжения не имеет значения и первым потечет стержень, в сечении которого возникают наибольшие по модулю напряжения. В данном случае это третий стержень. Из условия его текучести находим предельную нагрузку:
а из условия прочности - допускаемую нагрузку на конструкцию:
Отметим, что при расчете по упругой стадии деформаций нагрузка и напряжения на всем участке деформирования связаны прямой пропорциональной зависимостью, а потому коэффициенты запаса по напряжениям и по нагрузке равны между собой. II. Определение предельной грузоподъемности системы расчетом по упругопластической стадии Проследим за дальнейшим развитием процесса нагружения – деформирования системы после того, как напряжения в третьем стержне достигли предела текучести. Примем, что материал конструкции работает в соответствии с идеализированной диаграммой упругопластического тела – диаграммой Прандтля (рис. 4).
Рис.4
При продолжении роста нагрузки напряжения в третьем стержне будут оставаться постоянными и равными Поскольку усилие в стержне 3 уже известно, задача становится статически определимой и усилия в стержнях 1 и 2 находим из уравнений равновесия узла
Рис.5
Решение этой системы уравнений при
Зависимости напряжений от нагрузки на данной стадии работы системы:
Предельное пластическое состояние конструкции достигается тогда, когда напряжения в одном из упругих стержней 1 и 2 достигнут предела текучести и конструкция превратится в механизм. Определим, какой из стержней потечет первым, приравняв напряжения в стержнях пределу текучести и найдя, при каком значении нагрузки стержни потекут:
Видно, что нагрузка, при которой
Заметим, что в предельном состоянии напряжения в первом и третьем стержнях достигли предела текучести. При этом первый стержень потек вслед за третьим, хотя к концу упругой стадии напряжения в нем были меньше, чем во втором стержне. Зависимость между напряжениями и нагрузкой с начала деформирования в упругопластической стадии уже не является линейной, а потому одинаковым коэффициентам запаса по нагрузке и по напряжениям в наиболее напряженном упругом стержне будут соответствовать различные значения допускаемой нагрузки. Так, в нашем случае допускаемая нагрузка с коэффициентом запаса
Если же исходить из коэффициента запаса
Очевидно, что расчет по допускаемой нагрузке приводит к повышенному запасу прочности в отдельных стержнях системы, а расчет по допускаемым напряжениям не обеспечивает заданного коэффициента запаса по нагрузке. Поэтому значение допускаемой нагрузки принимаем из условия прочности по нагрузке: Следует отметить, что современными строительными нормами проектирования предусматривается раздельное применение коэффициентов надежности по нагрузке и по материалу. Условие прочности в этом случае приняло бы вид
где III. Определение предельной грузоподъемности системы расчетом по предельному пластическому состоянию Заданная система имеет три деформируемых стержня, один из которых является лишним, так как система один раз статически неопределима. В предельном состоянии, когда конструкция превращается в механизм, должны потечь два стержня (один лишний и один необходимый). В рассмотренных ранее способах решения этой задачи рассматривался порядок перехода материала стержней в пластическую стадию работы, было выяснено, какой стержень потечет первым, какой – вторым. При этом конструкция сначала работает в упругой стадии (материал всех стержней подчиняется закону Гука), затем переходит в упругопластическую стадию работы. Решение вопроса о предельной нагрузке на конструкцию, при которой последняя переходит в механизм, может быть получено и без рассмотрения упругой и упругопластической стадий работы конструкции. Для этого достаточно исследовать равновесие системы в момент перехода в предельное пластическое состояние, т. е. в так называемое предельное равновесие. Сложность состоит в том, что конкретный механизм перехода системы в предельное пластическое состояние заранее неизвестен. Поэтому приходится рассматривать все кинематически возможные варианты перехода к предельному равновесию и для каждого из них вычислять предельную нагрузку. Фактически будет иметь место тот вариант предельного состояния, которому соответствует минимальное значение предельной нагрузки. В данной задаче возможны три варианта предельного равновесия конструкции: 1) текут стержни 1 и 3; 2) текут стержни 2 и 3 и, наконец, 3) текут стержни 2 и 1. В качестве примера рассмотрим два варианта предельного пластического состояния в нашей задаче. Согласно первому варианту допустим, что напряжения в стержнях 1 и 3 равны Рис.6
Чтобы неизвестное усилие N 2 не входило в уравнение, в качестве условия предельного равновесия выберем уравнение "сумма моментов относительно шарнира
Из этого уравнения при Во втором варианте предельного пластического состояния напряжения в стержнях 2 и 3 равны
Рис.7
Запишем уравнение предельного равновесия для узла С (такое уравнение равновесие, в которое не входит неизвестное усилие N 1):
Отсюда Аналогично можно определить предельную нагрузку для третьего варианта, в котором пластически деформироваться будут стержни 1 и 2. Фактической предельной нагрузкой будет минимальное значение из трех полученных. В нашей задаче это Надо отметить, что число кинематически возможных вариантов предельного состояния может уменьшиться, если ось какого-либо стержня совпадает с линией действия нагрузки (в этом случае поворота этого стержня не происходит и механизма не образуется). Допускаемое значение нагрузки определяем как отношение предельного значения нагрузки к коэффициенту запаса прочности n. IV. Определение остаточных напряжений Процесс нагружения конструкции в упругой и упругопластической стадиях, рассмотренный в пп. I и II, можно отобразить на диаграмме в осях
Рис.8. Зависимость между напряжениями и нагрузкой в процессе увеличения и уменьшения нагрузки для стержней:
Рассмотрим процесс полной разгрузки системы из положения предельного равновесия (на диаграмме это соответствует вертикальной прямой с абсциссой Зависимости
где Запишем эти зависимости непосредственно после начала разгрузки:
Напряжение Пользуясь найденными значениями как начальными параметрами, запишем зависимости для напряжений на втором участке разгрузки, проходящей в упругопластической стадии:
При полной разгрузке (
|