Интерпретация факторов
Как же понять, что скрыто в найденных факторах? Основной информацией, которую использует исследователь, являются факторные нагрузки. Для интерпретации необходимо приписать фактору термин. Этот термин появляется на основании анализа корреляций фактора с исходными переменными. Например, при анализе успеваемости школьников фактор имеет высокую положительную корреляцию с оценкой по алгебре, геометрии и большую отрицательную корреляцию с оценками по рисованию – он характеризует точное мышление. Не всегда такая интерпретация возможна. Для повышения интерпретируемости факторов добиваются большей контрастности матрицы факторных нагрузок. Метод такого улучшения результата называется методом вращения факторов. Его суть состоит в следующем: если мы будем вращать координатные оси, образуемые факторами, мы не потеряем в точности, представляя данные через новые оси, и не беда, что при этом факторы не будут упорядочены по величине объясненной ими дисперсии, зато у нас появляется возможность получить более контрастные факторные нагрузки. Вращение состоит в получении новых факторов – в виде специального вида линейной комбинации имеющихся факторов: . Чтобы не вводить новые обозначения, факторы и факторные нагрузки, полученные вращением, будем обозначать их теми же символами, что и до вращения. Для достижения цели интерпретируемости существует достаточно много методов, которые состоят в оптимизации подходящей функции от факторных нагрузок. Мы рассмотрим реализуемый пакетом метод varimax. Этот метод состоит в максимизации «дисперсии» квадратов факторных нагрузок для переменных: . Чем сильнее разойдутся квадраты факторных нагрузок к концам отрезка [0,1], тем больше будет значение целевой функции вращения, тем четче интерпретация факторов.
|