Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Факторный анализ. Идея метода состоит в сжатии матрицы признаков в матрицу с меньшим числом переменных, сохраняющую почти ту же самую информацию





Идея метода состоит в сжатии матрицы признаков в матрицу с меньшим числом переменных, сохраняющую почти ту же самую информацию, что и исходная матрица. В основе моделей факторного анализа лежит гипотеза, что наблюдаемые переменные являются косвенными проявлениями небольшого числа скрытых (латентных) факторов. Под моделью факторного анализа понимают представление исходных переменных в виде линейной комбинации факторов.

Х1 Х2..... Хn F1 ... Fm

┌──┬──┬──┬──┬──┐ ┌──┬──┬──┐;

│ │ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │ │;

└──┴──┴──┴──┴──┘ └──┴──┴──┘;

Рис. 7.1. Сжатие признакового пространства

с применением факторного анализа

Факторы F построены так, чтобы наилучшим способом (с минимальной погрешностью) представить Х. В этой модели «скрытые» переменные Fk называются общими факторами, а переменные Ui – специфическими факторами («специфический» – это лишь одно из значений используемого в англоязычной литературе слова unique, в отечественной литературе в качестве определения Ui встречаются также слова «характерный», «уникальный»). Значения aik называются факторными нагрузками.

Обычно (хотя и не всегда) предполагается, что Xi стандартизованы (s i =1, Xi =0), а факторы F 1, F 2, …, Fm независимы и не связаны со специфическими факторами Ui (существуют модели, выполненные в других предположениях). Предполагается также, что факторы Fi стандартизованы.

В этих условиях факторные нагрузки aik совпадают с коэффициентами корреляции между общими факторами и переменными Xi. Дисперсия Xi раскладывается на сумму квадратов факторных нагрузок и дисперсию специфического фактора:

, где .

Величина называется общностью, – специфичностью. Другими словами, общность представляет собой часть дисперсии переменных, объясненную факторами, специфичность – часть не объясненной факторами дисперсии.

В соответствии с постановкой задачи необходимо искать такие факторы, при которых суммарная общность максимальна, а специфичность – минимальна.







Дата добавления: 2015-08-30; просмотров: 353. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия