Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Факторный анализ. Идея метода состоит в сжатии матрицы признаков в матрицу с меньшим числом переменных, сохраняющую почти ту же самую информацию





Идея метода состоит в сжатии матрицы признаков в матрицу с меньшим числом переменных, сохраняющую почти ту же самую информацию, что и исходная матрица. В основе моделей факторного анализа лежит гипотеза, что наблюдаемые переменные являются косвенными проявлениями небольшого числа скрытых (латентных) факторов. Под моделью факторного анализа понимают представление исходных переменных в виде линейной комбинации факторов.

Х1 Х2..... Хn F1 ... Fm

┌──┬──┬──┬──┬──┐ ┌──┬──┬──┐;

│ │ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │ │;

└──┴──┴──┴──┴──┘ └──┴──┴──┘;

Рис. 7.1. Сжатие признакового пространства

с применением факторного анализа

Факторы F построены так, чтобы наилучшим способом (с минимальной погрешностью) представить Х. В этой модели «скрытые» переменные Fk называются общими факторами, а переменные Ui – специфическими факторами («специфический» – это лишь одно из значений используемого в англоязычной литературе слова unique, в отечественной литературе в качестве определения Ui встречаются также слова «характерный», «уникальный»). Значения aik называются факторными нагрузками.

Обычно (хотя и не всегда) предполагается, что Xi стандартизованы (s i =1, Xi =0), а факторы F 1, F 2, …, Fm независимы и не связаны со специфическими факторами Ui (существуют модели, выполненные в других предположениях). Предполагается также, что факторы Fi стандартизованы.

В этих условиях факторные нагрузки aik совпадают с коэффициентами корреляции между общими факторами и переменными Xi. Дисперсия Xi раскладывается на сумму квадратов факторных нагрузок и дисперсию специфического фактора:

, где .

Величина называется общностью, – специфичностью. Другими словами, общность представляет собой часть дисперсии переменных, объясненную факторами, специфичность – часть не объясненной факторами дисперсии.

В соответствии с постановкой задачи необходимо искать такие факторы, при которых суммарная общность максимальна, а специфичность – минимальна.







Дата добавления: 2015-08-30; просмотров: 353. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия