Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Общие сведения.





 

Don DeLillo White Noise

Introduction by Mark OsteenWhite NoiseI Waves and Radiation1234567891011121314151617181920II The Airborne Toxic Event21III Dylarama22232425262728293031323334353637383940

 

ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ

Digital signals processing. Digital nonrecursive frequency filters.

Тема 7. НЕРЕКУРСИВНЫЕ ЧАСТОТНЫЕ ЦИФРОВЫЕ ФИЛЬТРЫ

Недостаточно овладеть премудростью, нужно уметь пользоваться ею.

Марк Туллий Цицерон. О высшем благе и высшем зле.

Римский сенатор и философ, 1 в.д.н.э.

Мало пользы от теории бокса, пока сам не научишься махать кулаками.

Евгений Буцко. Идеология белых воротничков.

Радиоинженер, геофизик Уральской школы, ХХ в.

Содержание

1. Общие сведения. Типы фильтров. Методика расчетов нерекурсивных цифровых фильтров. Фильтры с линейной фазовой характеристикой.

2. Идеальные частотные фильтры. Импульсная реакция фильтров.

3. Конечные приближения идеальных фильтров. Ограничение окна операторов фильтров. Применение весовых функций для нейтрализации явления Гиббса. Основные весовые функции. Весовая функция Кайзера.

4. Гладкие частотные цифровые фильтры. Принцип синтеза фильтров.

5. Дифференцирующие цифровые фильтры. Передаточная функция. Точность дифференцирования. Применение весовых функций. Фильтры с линейной групповой задержкой.

6. Альтернативные методы расчета НЦФ. Оптимизационные методы. Метод частотной выборки.

Введение

Нерекурсивные фильтры реализуют алгоритм свертки двух функций: yk = hn ③ xk-n, где xk – массив входных данных фильтра, hn – оператор (ядро, импульсный отклик) фильтра, k и n – нумерация числовых значений массива данных и числовых значений коэффициентов фильтра, k = 0, 1, 2, …,K; n = 0, 1, 2, …,N; K ≥ N. Значения выходных отсчетов свертки yk для любого аргумента k определяются текущим и "прошлыми" (до k-N) значениями входных отсчетов. Такой фильтр называется нерекурсивным цифровым фильтром (НЦФ). Интервал [0-N] оператора получил название "окна" фильтра. Окно фильтра составляет N+1 отсчет, фильтр является односторонним каузальным, т.е. причинно обусловленным текущими и "прошлыми" значениями входного сигнала, и выходной сигнал не опережает входного. В общем случае, каузальный фильтр меняет в спектре сигнала состав гармоник, их амплитуды и фазы.

Каузальный фильтр может быть реализован физически в реальном масштабе времени. Начало фильтрации возможно только при задании определенных начальных условий – N значений отсчетов для точек x(k-n) при k<n. Как правило, в качестве начальных условий принимаются нулевые значения, тренд сигнала или значения отсчета х(0), т.е. продление отсчета x(0) назад по аргументу.

При обработке данных на ЭВМ ограничение по каузальности снимается. В программном распоряжении фильтра могут находиться как "прошлые", так и "будущие" (k+n, до k+N') значения входной последовательности отсчетов относительно текущей точки вычислений k, при этом для завершения свертки (аналогично началу) требуется N' точек конечных условий при (k+n)>K. При N' = N и h(-n) = h(n) фильтр называется двусторонним симметричным фильтром. Симметричные фильтры, в отличие от односторонних, не изменяют фазы обрабатываемого сигнала.

Общие сведения.

Основное свойство любого фильтра – его частотная (frequency response) и фазовая характеристики. Они показывают, какое влияние фильтр оказывает на амплитуду и фазу различных гармоник обрабатываемого сигнала.

К наиболее известным типам нерекурсивных цифровых фильтров (НЦФ) относятся частотные фильтры, алгоритм которых для симметричных НЦФ, не изменяющих фазу сигналов, имеет вид:

yk = hn sk-n.

Типы фильтров. В зависимости от вида частотной характеристики выделяют три основных группы частотных фильтров: ФНЧ - фильтры низких частот (low-pass filters) - пропускание низких и подавление высоких частот во входном сигнале, ФВЧ - фильтры высоких частот (high-pass filters) - пропускание высоких и подавление низких частот, и ПФ - полосовые фильтры, которые пропускают (band-pass filters) или подавляют (band-reject filters) сигнал в определенной частотной полосе. Среди последних в отдельную группу иногда выделяют РФ - режекторные фильтры, понимая под ними фильтры с подавлением определенной гармоники во входном сигнале, и СФ – селекторные фильтры, обратные РФ.

Если речь идет о подавлении определенной полосы частот во входном сигнале, то такие фильтры называют заградительными. Ни теоретического, ни практического интереса к методам их расчета обычно не проявляется, так как их частотная характеристика обычно задается инверсией характеристики полосового фильтра (1-Hп(w)) и каких-либо дополнительных особенностей при своем проектировании не имеет.

Схематические частотные характеристики фильтров приведены на рисунке 7.1.1. Между частотными интервалами пропускания и подавления сигнала существует зона, которая называется переходной. Ширина переходной зоны определяет резкость характеристики фильтра. В этой зоне амплитудная характеристика монотонно уменьшается (или увеличивается) от полосы пропускания до полосы подавления (или наоборот).

Рис. 7.1.1. Типы основных частотных фильтров.

Практика проектирования цифровых фильтров базируется, в основном, на синтезе фильтров низких частот. Все другие виды фильтров могут быть получены из фильтров низких частот соответствующим преобразованием.

Рис. 7.1.2.

Так, например, фильтр высоких частот g(n) может быть получен инверсией фильтра низких частот h(n) - вычислением разности между исходным сигналом и результатом его фильтрации низкочастотным НЦФ:

y(k) = s(k) – h(n) s(k-n).

Отсюда, условие инверсии симметричного низкочастотного фильтра в высокочастотный:

g(0) = 1-h(0), g(n) = -h(n) при n¹0.

Пример обращения и спектры фильтров приведены на рис. 7.1.2 (в правой части главных диапазонов).

Рис. 7.1.3.

Применяется также способ получения фильтров высоких частот из низкочастотных фильтров путем реверса частоты в передаточной функции низкочастотного фильтра, т.е. заменой переменной w на переменную w' = p-w (при Dt = 1). Для симметричных фильтров, содержащих в передаточной функции только косинусные члены аргумента w, в результате такой операции будем иметь:

cos n(p-w) = cos np cos nw = (-1)n cos nw.

Последнее означает смену знака всех нечетных гармоник передаточной характеристики фильтра и, соответственно, всех нечетных членов фильтра:

g(n) = h(n) при n = ±1, ±3, …

Пример частотного реверса приведен на рис. 7.1.3. Физическую сущность такой операции инверсии спектра легко понять на постоянной составляющей сигнала. При изменении на противоположный знака каждого второго отсчета постоянной величины это постоянной значение превращается в "пилу", частота которой равна частоте Найквиста главного частотного диапазона (отсчеты по амплитудным значениям этой частоты), равно как и наоборот, отсчеты гармоники сигнала на частоте Найквиста (знакочередующиеся в силу сдвига по интервалам дискретизации на p) превращаются в постоянную составляющую.

Полосовой фильтр может реализоваться последовательным применением ФНЧ и ФВЧ с соответствующим перекрытием частот пропускания. В математическом представлении это означает последовательную свертку массива данных с массивами коэффициентов hн - низкочастотного, и hв - высокочастотного фильтров:

vk = hн(n) ③ s(k-n), yk = hв(n) ③ vk = hн(n) ③ hв(n) ③ s(k-n).

Так как операция свертки коммутативна, то вместо отдельных массивов коэффициентов ФНЧ и ФВЧ их сверткой может быть определен непосредственно массив коэффициентов полосового фильтра: hn = hн(n) ③ hв(n).

Полосовой режекторный фильтр также может быть получен методом инверсии полосового фильтра. Одночастотные режекторные фильтры обычно выполняются на основе простых рекурсивных цифровых фильтров, более эффективных для данных целей.

Часто к фильтрам предъявляются более сложные требования. Например, фильтр может иметь несколько частотных полос пропускания с разными коэффициентами усиления, а для полос непропускания могут быть заданы разные коэффициенты подавления. Иногда требуемая частотная характеристика фильтра задается вообще произвольной кривой.

Методика расчетов НЦФ. Обычно при фильтрации сигналов задается требуемая частотная характеристика фильтра. Задачей является построить фильтр, отвечающий заданным требованиям и провести фильтрацию. Зачастую бывает невозможно построить в точности заданный фильтр, и выполняется фильтр, близкий по характеристикам к заданному.

Существует много способов построения фильтров с заданной частотной характеристикой. Наиболее простой из них – проектирование фильтров с линейной фазой с помощью весовых окон. Этот способ является универсальным и позволяет получить фильтр с любой заданной частотной характеристикой. Отметим, однако, что с помощью других, математически более строгих и совершенных методов, иногда удается построить фильтр меньшей длины, удовлетворяющий тем же требованиям к частотной характеристике.

Наиболее простой является методика расчетов программных двусторонних симметричных фильтров без изменения фазы выходного сигнала относительно входного. В самом общем виде она включает:

1. Задание идеальной амплитудно-частотной характеристики передаточной функции фильтра. Термин идеальности понимается здесь в том смысле, что на характеристике указываются полосы пропускания и подавления частот с коэффициентами передачи 1 и 0 соответственно без переходных зон.

2. Расчет функции импульсного отклика идеального фильтра (обратное преобразование Фурье частотной характеристики фильтра). При наличии скачков функций на границах пропускания/подавления импульсный отклик содержит бесконечно большое количество членов.

3. Ограничение функции отклика до определенного количества членов, при этом на передаточной характеристике фильтра возникает явление Гиббса – осцилляции частотной характеристики с центрами на скачках.

4. Для нейтрализации явления Гиббса производится выбор весовой функции и расчет ее коэффициентов, на которые умножаются коэффициенты функции отклика фильтра. Результатом данной операции являются значения коэффициентов оператора фильтра (рабочий импульсный отклик фильтра). По существу, операции 3 и 4 представляют собой усечение ряда Фурье динамического (временного) представления передаточной функции фильтра определенной весовой функцией (умножение на весовую функцию).

5. С использованием полученных значений коэффициентов оператора фильтра производится построение его частотной характеристики и проверяется ее соответствие поставленной задаче.

При проектировании симметричных нерекурсивных фильтров нет необходимости базироваться на расчете фильтров низких частот с последующим их преобразованием, при необходимости, в фильтры верхних частот или полосовые фильтры. Расчет непосредственно полосового фильтра достаточно прост, а НЧ- и ВЧ-фильтры являются частным случаем полосового фильтра с одной верхней или одной нижней граничной частотой.

Фильтры с линейной фазовой характеристикой. Несколько сложнее расчет каузальных (односторонних) частотных фильтров, для которых требуется обеспечить линейность фазово-частотной характеристики для исключения изменения гармонии сочетания частотных составляющих сигнала на его выходе по отношению к входу. Чтобы фильтр имел линейную фазовую характеристику необходимо обеспечить выполнение условия:

j(w) = aw. (7.1.1)

Оно выполняется, если импульсная характеристика фильтра имеет положительную симметрию:

h(n) = h(N-n-1), n = 0, 1, 2, …, (N-1)/2, N – нечетное (тип 1);

n = 0, 1, 2, …, (N/2)-1, N – четное (тип 2).

При этом фазовая характеристика будет определяться длиной фильтра:

a = (N-1)/2.

Частотная характеристика фильтра:

H(w) = |H(w)| exp(jj(w)), (7.1.2)

где модуль |H(w)| задается аналогично АЧХ симметричных фильтров. Следует также учитывать, что частотную характеристику типа 2 нельзя использовать для проектирования фильтров верхних частот, т.к. она всегда равна нулю на частоте Найквиста.

Собственно методика расчета каузальных фильтров, за исключением использования (7.1.2) для задания частотной характеристики, не отличается от методики расчета симметричных фильтров, включая необходимость использования весовых функций для нейтрализации явления Гиббса. Это позволяет применять чисто практический метод расчетов – вычислить и отработать сначала симметричный фильтр на N-точек (тип 1), а затем превратить его в каузальный сдвигом вправо на (N-1)/2 точек в область только положительных значений n ≥ 0.







Дата добавления: 2015-08-30; просмотров: 1060. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия