Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

КАЛИНИНГРАДСКИЙ ИНСТИТУТ ЭКОНОМИКИ ФИЛИАЛ САНКТ-ПЕТЕРБУРГСКОЙ АКАДЕМИИ УПРАВЛЕНИЯ И ЭКОНОМИКИ





.

Построим на плоскости 4 точки и обозначим их , , , .

Рис. 22. Изоморфный орграф G = (X, U).

Так как , то при вершине нет петель, , значит из вершины исходят 2 стрелки к вершине . Рассуждая таким же образом, построим геометрический орграф, изоморфный орграфу G = (X, U), для которого матрица В является матрицей смежности (рис. 22).

Теперь запишем матрицу инцидентности С для орграфа G.

Построенный орграф G = (X, U) имеет 4 вершины и 12 дуг, т.е. Х={ , , , },

U= .

Матрица инцидентности орграфа G будет иметь 4 строки и 12 столбцов

Петле соответствует нулевой столбец. Матрица инцидентности только указывает на наличие петель в орграфе, но не указывает, каким вершинам эти петли инцидентны.

 

 

3. Задана симметрическая матрица А неотрицательных целых чисел.

 

1. Нарисовать на плоскости граф (единственный с точностью до изоморфа), имеющий заданную матрицу А своей матрицей смежности. Найти матрицу инцидентности графа G.

2. Нарисовать на плоскости орграф (единственный с точностью до изоморфизма), имеющий заданную матрицу А свое матрицей смежности. Найти матрицу инцидентности орграфа G.

А=

 

Решение1. Напомним, что матрицей смежности графа с множеством вершин называется матрица размера , в которой элемент равен числу ребер в G, соединяющих с . Матрица смежности графа G является симметрической, то есть

= .

Построим граф по заданной матрице смежности.

Поскольку данная матрица является симметрической матрицей четвертого порядка с неотрицательными элементами, то ей соответствует неориентированный граф с четырьмя вершинами. Расположив вершины на плоскости произвольным образом (рис. 3), соединяем их с учетом кратности ребер.

А=

 

 

 
 

Рис. 3 Граф G=(X,U)

Теперь найдем матрицу инцидентности графа G =(X,U).

Напомним определение матрицы инцидентности графа G=(X,U) с множеством вершин и множеством ребер Так называется матрица размера , у которой

2. Заданная матрица А имеет 4 строки и 4 столбца, следовательно орграф имеет 4 вершины. Обозначим их соответственно а матрицу представим в виде

 
 


На плоскости строим 4 точки. Обозначим их через

Рис. 4. Изоморфный орграф G=(X,U).

Так как то при вершине имеется петля; значит, из вершины выходят две стрелки к вершине и т.д. (рис.4).

Теперь запишем матрицу инцидентности С для орграфа G.

Построим орграф G=(X,U) имеет 4 вершины и 17 дуг, т.е.

Матрица инцидентности орграфа G будет иметь 4 строки и 17 столбцов

4. Заданная формула От формулы перейти к эквивалентной ей формуле так, чтобы формула не содержала связок «» и «». Исходя из истинностных таблиц, доказать, что формулы и равно сильны (логически эквивалентны). Для формулы СКНФ и СДНФ.

Решение. Как известно, все формулы логики высказываний можно записать при помощи пропозициональных связок: т.е. пропозициональные связки могут быть определены в терминах связок Можно доказать, что

(1)

(2)

(3)

Используя равенства (1) – (3) и основные законы

21 – 30. Задана симметрическая матрица A неотрицательных целых чисел.

1. Нарисовать на плоскости граф G=(X,U) (единственный с точностью до изоморфизма), имеющий заданную матрицу А своей матрицей смежности. Найти матрицу инцидентности

графа G.

2. Нарисовать на плоскости орграф G=(X,U) (единственный с точностью до изоморфизма)? Имеющий заданную матрицу А своей матрицей смежности. Найти матриц инцидентности

Орграфа G.

21. 22.

23. 24.

 

 

25. 26.

 

27. 28.

 

 

29. 30.

 

КАЛИНИНГРАДСКИЙ ИНСТИТУТ ЭКОНОМИКИ ФИЛИАЛ САНКТ-ПЕТЕРБУРГСКОЙ АКАДЕМИИ УПРАВЛЕНИЯ И ЭКОНОМИКИ







Дата добавления: 2015-09-19; просмотров: 441. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия