Для экономических специальностей заочной формы обучения
Вариант 6 1. На полке в случайном порядке расставлено 10 книг, среди которых находится трехтомник Пушкина. Найти вероятность того, что эти тома стоят в порядке возрастания (но не обязательно рядом). 2. На начальном участке для мотоциклиста-гонщика имеются 3 препятствия, вероятность остановки на каждом из которых равна 0,1. Вероятность остановки на заключительном участке равна 0,7. Какова вероятность того, что мотоциклист доедет до финиша без единой остановки? 3. В цехе работают 20 станков. Из них 10 марки А, 6 марки В и 4 марки С. Вероятность того, что качество детали окажется отличным для этих станков соответственно равна 0,9, 0,8 и 0,7. Какой процент отличных деталей выпускает цех в целом? 4. Решить задачи, используя формулу Бернулли и теоремы Муавра-Лапласа. а) Монету бросают 6 раз. Найти вероятность того, что герб выпадет не менее трех раз. б) Вероятность того, что деталь не прошла проверку ОТК, равна р=0,2. Найти вероятность того, что среди 500 случайно отобранных деталей окажется непроверенных: 1) ровно110; 2) от 90 до 115. 5. Дан перечень возможных значений дискретной величины Х: x 1=1, x 2=3, x 3=5, а также даны математическое ожидание этой величины M[ X ]=2,2 и ее квадрата M[ X 2]=6,6. Найти закон распределения случайной величины Х. 6. Непрерывная случайная величина Х задана функцией распределения Найти: а) параметр k; б) математическое ожидание; в) дисперсию. 7. Известны математическое ожидание а =3 и среднее квадратичное отклонение s=2 нормально распределенной случайной величины Х. Найти вероятность: а) попадания этой величины в заданный интервал (4, 8); б) отклонения этой величины от математического ожидания не более, чем на d=3. 8. Из генеральной совокупности извлечена выборка, которая представлена в виде интервального вариационного ряда. а) Предполагая, что генеральная совокупность имеет нормальное распределение, построить доверительный интервал для математического ожидания с доверительной вероятностью g=0,95. б) Вычислить коэффициенты асимметрии и эксцесса, используя упрощенный метод вычислений, и сделать соответствующие предположения о виде функции распределения генеральной совокупности. в) Используя критерий Пирсона, проверить гипотезу о нормальности распределения генеральной совокупности при уровне значимости a=0,05.
9. Методом наименьших квадратов подобрать функцию по табличным данным и сделать чертеж.
ВЫСШАЯ МАТЕМАТИКА Контрольная работа №3
|